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ABSTRACT. For an algebraic number a and v € R, let [al be the house, h(a) be the (logarithmic) Weil height,
and hy(a) = (dega)Vh(a) be the y-weighted (logarithmic) Weil height of a. Let f: Q — [0,00) be a function
on the algebraic numbers Q, and let S C Q. The Northcott number N;(S) of S, with respect to f, is the
infimum of all X > 0 such that {a € S; f(a) < X} is infinite. This paper studies the set of Northcott numbers
N¢(O) for subrings of Q for the house, the Weil height, and the y-weighted Weil height. We show:

(1) Every t > 1 is the Northcott number of a ring of integers of a field w.r.t. the house .

(2) For each t > 0 there exists a field with Northcott number in [t, 2¢] w.r.t. the Weil height h(-).

(3) Forall 0 <~ <1 and~ <~ there exists a field K with th/ (K) =0 and N}, (K) = oo.

For (1) we provide examples that satisfy an analogue of Julia Robinon’s property (JR), examples that satisfy
an analogue of Vidaux and Videla’s isolation property, and examples that satisfy neither of those. Item (2)
concerns a question raised by Vidaux and Videla due to its direct link with decidability theory via the Julia
Robinson number. Item (3) is a strong generalisation of the known fact that there are fields that satisfy the
Lehmer conjecture but which are not Bogomolov in the sense of Bombieri and Zannier.

1. INTRODUCTION

In this article we investigate the spectrum of Northcott numbers of subrings of the algebraic numbers Q for
the house and the Weil height. The Northcott number with respect to the Weil height was introduced by Vidaux
and Videla [28], and refines the concept of the Northcott property which goes back to Northeott [15, 16] but was
formally defined by Bombieri and Zannier [3]. Northcott numbers for various other height functions have been
around implicitly and explicitly in the Bogomolov property, the Lehmer conjecture, the Schinzel-Zassenhaus
conjecture (now Dimitrov’s theorem), the Julia Robinson property, and the Julia Robinson number. To unify
all these concepts under the umbrella of Northcott numbers we start with the following obvious generalisation.

Definition 1 (Northcott number). For a subset S of the algebraic numbers Q and f : Q — [0,00) we set
Np(S) =inf{t € [0,00); #{a € S; f(a) < t} = 0},

with the usual interpretation inf ) = co. We call Ny(S) € [0, 00] the Northcott number of S (with respect to f).
If N3 (S) = oo then we say that S has the Northcott property (with respect to f).

Throughout this introduction ring always means not the zero ring. Next we give some background on the
relevant results that use the house M of an algebraic number (i.e., the maximum modulus of its conjugates over
Q).
In 1959, Julia Robinson [19] showed the undecidability of the first order theory of any number field, extending
the case Q dealt with in her Ph.D. dissertation. A few years later she began [20, 21] to investigate decidability
questions for certain rings of totally real algebraic integers of infinite degree. To this end she introduced the
following property, nowadays called property (JR). Let O be a ring of totally real algebraic integers, and let
O C O be its subset of totally positive elements. The ring O has property (JR) if the following holds

#{a € OF;la1 < N5(0)} = .

As usual, z < oo is true for all x € R by convention. Note that the Northcott property implies the property
(JR). Let N={1,2,3,...} be the set of positive integers, and set Ng = N U {0}.

Robinson showed that the semi-ring (Ng, 0,1, +,-) is first order definable in O for any ring O of totally real
algebraic integers with property (JR) (not necessarily the ring of integers of a field, as pointed out by Vidaux
and Videla [27]). She then proved that the rings of integers O of the maximal totally real extension K of Q,
and of K = Q(y/n;n € N) both have property (JR): the former since the infimum 4 in the definition of N7(O%)
is attained, and the latter since it has the Northcott property. Hence, both have undecidable first order theory.
Since the aforementioned field is a pro-2 extension of Q, it follows from a result of Videla [29], that its ring
of integers is first order definable in this field, and thus the field inherits the undecidability from its ring of
integers.
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A question that arose from Robinson’s work, explicitly proposed by Vidaux and Videla [27, Question 1.5], is,
which numbers can be realised as Northcott numbers' Af(O}). Important progress on this question was made
by Gillibert and Ranieri [11] who proved that all numbers of the form [2v/2n] + 2v/2n or 8n, with n > 1 odd
and square-free, are of this type. Further results on the distribution of the Northcott numbers N(OT) were
obtained by Castillo [4], and Castillo, Vidaux, and Videla [5].

Another question, explicitly proposed by Robinson herself, is, if in fact the ring of integers O of every totally
real field K has property (JR). Gillibert and Ranieri [11] noted that all their examples do have property (JR).

Vidaux and Videla [27, Definition 1.2] introduced a related condition which they call isolation property, and
which also allows, by the same strategy as for the property (JR), to define the semi-ring (Ng,0, 1,4+, -) by a first
order formula in @. A ring O of totally real algebraic integers has the isolation property if it does not have
property (JR), and if there exists M > N7(OT) such that for all € > 0 we have

#{a € O NH(OT) +e <l < M} < 0.

Since there are only finitely many totally real integers that assume a fixed house value ¢ (in particular that
assume the value N7(OT)) it follows that the above cardinality gets arbitrarily large as € gets small. Vidaux
and Videla [27] have constructed rings of totally real algebraic integers that satisfy their isolation property but
it is unknown if any of these is the ring of integers O of a field, and so Robinson’s question also remains open.
Nevertheless, examining decidability of subrings and subfields of Q@ by Julia Robinson’s strategy (and refine-
ments thereof) is an active area of research. From the growing body of literature, we refer the reader to the work
(and references therein) of Shlapentokh [23], Springer [25], as well as Martinez-Ranero, Utreras, and Videla [13].

Our first result shows that if we consider the full set of algebraic integers, and we do not restrict to totally
real fields, then every real number ¢ > 1 is a Northcott number with respect to the house. Furthermore, the
analogous question to Julia Robinson’s one can be answered in the negative, i.e., the infimum in the definition
of N7(Ok) is not always attained. Finally, we can also construct rings of integers Ok with given Northcott
number that neither have the analogue of property (JR) nor the analogue of the isolation property?.

Theorem 1. Lett > 1 be a real number.

(a) There exists a field K of algebraic numbers such that its ring of integers Ok satisfies Nmq(Ok) =t and
#{a € Ok;lal < t} = 0.

(b) There exists M > t and a field K of algebraic numbers such that its ring of integers Ok satisfies
N(Ok) =t and #{a € Ox;@ <t ort+e<lal< M} < oo for all € > 0.

(c) There emists a field K of algebraic numbers such that its ring of integers Oy satisfies Nm(Ok) =t and
#{a € O;lal < t} < 00 and #{a € Ok;t+e <lal < M} = oo for all M >t and all small enough
€> 0.

Since [al > 1 for every non-zero algebraic integer there is no ring of algebraic integers O for which #{a €
O;lal < 1} = co. But, by our method, it is easy to construct fields K whose ring of integers have Northcott
number ¢ = 1, and that satisfy either selection of the remaining two properties.

The proof of Theorem 1 comes in two steps. First we construct a ring with prescribed Northcott number
(and the additional topological features), and then we prove that the constructed ring is integrally closed (in
its field of fractions). For the latter we exploit a criterion of Dedekind, demanding our construction to satisfy
certain congruence constraints. The Siegel-Walfisz theorem about the distribution of primes in residue classes
ensures that we can satisfy these congruence conditions.

The original problems considered by Robinson, and by Vidaux and Videla (restricting to (9} for totally real
fields K') are more difficult than those we address in Theorem 1. However, it is conceivable that the methods
in this paper are also useful to address these original questions.

Our construction of rings with prescribed Northcott number relies on our next result. Consider a sequence
(&) of algebraic integers, let Oy be a ring, containing 1, of algebraic integers, O; = Ogpl1,...,&], and let
O =U;>10i = Og[€1,&2,&3, .. ]. Let K; be the field of fractions of O;, and set d; = [K;_1(&;) : K;—1]. For a

subfield K C Q and an algebraic number ¢ let M¢ i € K[z]| be the monic minimal polynomial of § over K.
We introduce a new quantity n(X,§) which measures the largest root of o(M¢ i) and how equidistributed the
normalised roots® of o(M¢ i) on the unit circle are for each field homomorphism ¢ : K — C. The definition of
(K, §) is given in Section 4. We always consider lim inf as element of the extended real number line RU{£oc0}.

Vidaux and Videla call N (OT) the Julia Robinson number of the ring O.

2It seems natural to impose the additional condition N7(O) is attained only for finitely many elements of O for the analogue
of the isolation property in the non totally real case, since this condition automatically holds only in the totally real case.

SWe say d complex points are (perfectly) equidistributed on a circle (of radius R) if they are pairwise distinct, all lie on the
circle, and the arc-length between neighboring points is 2rR/d. By “normalised” we mean scaled by the reciprocal of the largest
of their moduli.
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Theorem 2. Suppose that Ni7(O;) = oo, d; > 1, and that M, g, , € O;_1[z] for all i € N. Then
1— 00
Since d; > 1 the §; are pairwise distinct, and thus we also have the trivial upper bound
N7(0) < liminf[&;].
11— 00

The simplest application of Theorem 2 is when M, g, , = Mg, o and the conjugates over Q are perfectly
equidistributed on a circle |z| = ¢;, e.g., if they are of the form §J(-Z) = tigi (1 <j<d;). In Section 6 we explain
this and other applications, including a more sophisticated result (Corollary 13), that requires the full strength
of Theorem 2.

The Northcott number Af7(Of ) is also related to the invariant ¢; (K) for fields K C Q introduced by Gaudron
and Rémond in their investigations of the Siegel property for fields. This invariant is often difficult to determine;
however, they show [10, Lemme 5.4] that ¢;(K) > N7(Ok) provided K has infinite degree over Q.

They also provide an example [10, Exemple 4.6] of a field K that has infinitely many elements of bounded Weil
height but whose ring of integers has only finitely many elements of bounded house, i.e., N, (K) < co = N7(Ok).
Their proof of N7(Ok) = oo relies on the (perfect) orthogonality relations of the roots of unity, and could be
adapted to handle the aforementioned simplest case §J(-Z) = ti(i.- Their method, has the advantage that it
can deal with integral elements in Q[1,&2,&s,...] but, in contrast to ours, it seems restricted to the perfectly
equidistributed case, and cannot provide results such as Corollary 13 of Section 6.

The next height function we consider is the classical logarithmic absolute Weil height h(-). Again, we first
give some background, and then we state our result.

The origin of the Northcott property goes back to two seminal papers of D.G. Northcott [15, 16] from 1949
and 1950, in which he showed that there are only finitely many algebraic numbers of bounded degree and
bounded Weil height h(-), and proved the finiteness of the number of preperiodic points of bounded degree
under non-linear algebraic endomorphisms of projective varieties defined over Q.

The Northcott property (with respect to h(+)) is well known to have many diophantine applications, and thus
it is natural to refine this concept via the Northcott number as done by Vidaux and Videla [28]. Indeed, it
is often enough to know that the Northott number of a specified set is a sufficiently large finite number. For
instance, to show that the non-linear polynomial f € K[z] has only finitely many preperiodic points in the field
K c Q it suffices to know that N}, (K) > 2¢y where h(f()) > deg f - h(a) — ¢¢. Even more concretely, for the
polynomial f,, = z?" — 2?1 4 ... — 2 + 1 one can take® cy, = 2log 2.

On the opposite end, the first and the last author [18] have recently proved an arithmetic Bertini-type result
for which fields with prescribed arithmetic features and sufficiently small Northcott number are needed.

These observations raise the question which numbers can be realised as the Northcott number of a field or a
ring of integers of a subfield of Q. A similar question was raised by Vidaux and Videla [28, Question 6].

Question 1 (Vidaux, Videla 2016). Which real numbers can be realised as Northcott number (with respect to
the absolute logarithmic Weil height) of a ring extension of Q%

Interestingly, Vidaux and Videla’s motivation for the above Question 1 comes from their earlier question
about the spectrum of the Julia Robinson numbers (i.e., the spectrum of the Northcott numbers A7(O)) for
totally real fields K), and the fact that [al > h(«) for every non-zero algebraic integer. Given their motivation it
seems to us equally natural to propose the analogous question for the house M — a question that is completely
answered by Theorem 1.

However, back to the Weil height h(-). To the best of our knowledge, there are currently only two possible
“values” known as Northcott numbers for subrings of Q, namely 0 (attained, e.g., by Q) and oo (attained, e.g.,
by any number field). Here we show that the set of values cannot be sparse.

Theorem 3. Let t > 0. There exists a field L C Q satisfying
t < Nu(L) < NR(Op) <2t

More precisely, every field L generated over a number field K by any sequence of roots p;/di that converge to
exp(2t), and where p; and d; are primes and the p; are strictly increasing, satisfies the conclusion.

For the aforementioned example f,, = 2?" —2?"~! ... — 2 4+ 1 € Z[z], we conclude from Theorem 3 that f,

has only finitely many preperiodic points in L (with a bound independent of n), provided ¢ > 4log 2.

4Note that with g1 = y™ and ga = y™ fa(x/y) we have "1 = —yg1 + (z + y)g2 and y" ! = yg;. From this it is routine to
compute cy, .
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Finally, let us mention that Gaudron and Rémond’s Siegel property [10] is also related to N (K). For in-
stance, they show [10, Corollaire 1.2] that if K is a Siegel field of infinite degree over Q then N, (K) < oco.

Our last result is concerned with Northcott numbers for differently normalised Weil heights. Many results
around the Lehmer conjecture can be expressed in terms of the Northcott number of a suitably normalised Weil
height. For example, writing ;1 C Q for the set of roots of unity and deg o = [Q(«) : Q], Dobrowolski’s Theorem

_ 3
states that N;(Q\u) > 0 for® f(a) = (&%) (deg)h(a). Let us now restrict ourselves to the case

where
f(a) = hy(a) = (dega)”h(or)  for some v € R.

Lehmer’s conjecture itself states that N, (Q\x) > 0. And the Bogomolov property for a set S C Q, also
introduced by Bombieri and Zannier [3], can be rephrased as Ny, (S\p) > 0. In analogy the first author and
Pengo [17] say the set S has the Lehmer property if N, (S\p) > 0. Generalising both properties we say a set
S € Q is y-Bogomolov if Ny, (S\p) > 0, and we say S is y-Northeott if NVj,_ (S) = oo (i.e., S has the Northcott
property with respect to h(-)). Note that by Dobrowolski’s Theorem the field Q (and hence each of its subsets)
is v-Bogomolov for every v > 1.

Amoroso’s Theorem 1.3 in [1] shows that the field Q(Cg,21/3,C32,21/32,C33,21/33, ...), where {; denotes a
primitive d-th root of unity, is 1-Bogomolov but not 0-Bogomolov. Another example, as we explain now, of
such a field is Q' (v/—1), where Q" denotes the maximal totally real extension of Q. By a result of Schinzel

[22, Theorem 2] we have (dega)h(a) > log(HT\/ﬁ)ﬂ for every unit « in the ring of integers of Q' (v/—1). This
implies that Q' (v/—1) is 1-Bogomolov. But from Example 5.3 in [2], the sequence

((2 + \/—1)1/k>
2 -V _]. k>1
has all its elements in Q'"(y/—1) which shows that this field is not 0-Bogomolov.

This raises the question whether for every v < 1 and € > 0 there exists a field K that is y-Bogomolov (or
even y-Northeott) but not (y — €)-Bogomolov. Our next result answers this question in the affirmative.
Theorem 4. Let 0 < v <1, and € > 0. Choose sequences of primes (d;)ien and (p;)ien such that d;1q > 2d;,
and d;_w_ﬁ/z < logp; < log(2) + d2_7+6/2 for alli € N. Then Q(pi/di;i € N) is y-Northcott but not (y — €)-
Bogomolow.

While the proofs of Theorem 3 and of Theorem 4 rely on a method from [30], the proof of Theorem 1 is
essentially different and is based on an equidistribution argument. However, it turns out that both methods

are particularly easy to apply for fields of the shape Q(py di ;i € N) for certain primes p; and d;, and this is the
reason that all fields constructed in these three theorems are of this type.
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2. DEFINITIONS AND BASIC PROPERTIES OF NORTHCOTT NUMBERS

In this section, we introduce some notation, and collect some basic results about Northcott numbers.
We write | - | for the usual absolute value on C, and for the maximum norm on C¢ we set

|l = max [a.
1<i<d

For a field K of characteristic 0 we denote the set of field homomorphisms o : K — C by
Hom(K) = {0 : K — C; field homomorphism}.
The house of an algebraic number «, written [al, is defined as

[@l= max_ |o(a)l|.
oc€Hom(Q)
Next we define the Weil height. To this end let K be a number field, and let My denote the set of places of
K, that is, equivalence classes of absolute values. For each place v € M we let ||, be the unique representative
of v that extends one of the canonical absolute values® on Q. For v € Mg, let K, abbreviate the completion of

S5For = € R we write logt & = log max{z, exp(1)}.
6I.e., for € Q, we have |z|, = max{—=,z} if v is archimedean, and otherwise |p|, = p~' if v lies above the prime p.
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K with respect to | - |,. The (logarithmic) Weil height of « € K is given by

! Z [Ky : Q] logmax{1,|z|,}.

TR,

The product formula implies that h(a) does not depend on the ambient field K, and hence h(-) extends to a
function on Q. Further, we have h(c(a)) = h(a) for any field homomorphism ¢ : Q — Q, and h(a + ) <
h(a) + h(B) +1og2, and h(aB) < h(a) + h(B) for all o, 3 € Q. More generally, suppose we have a function

f:Q — [0,00) and that there exists a continuous function F' : R? — [0, 0o) such that for any field homomorphism
o :Q — Q, and all algebraic numbers «,  the following is true

(f1) flo(@)) = f(e),

(f2) fla+B) < F(f(a), f(B)),

(f3) flap) < F(f(a), F(B))-

With F(z,y) = max{xy,z + y + log 2} the properties (f1), ({2), and (f3) are satisfied for the Weil height h(-)
and for the house M. Furthermore, note that for each non-zero algebraic integer @ we have

h(a) < loglan

Dvornicich and Zannier observed that the proof of Northcott’s Theorem yields a more general statement, which
we state here in an even slightly more general form.

Lemma 5 (Dvornicich and Zannier [8, Thm. 2.1]). Suppose f from Definition 1 satisfies (f1), (f2), and (f3).
Let K be a subfield of Q, and U C K. Let S C Q be a set of roots of monic irreducible polynomials in K [x]
with coefficients in U and uniformly bounded degree. If U has the Northcott property with respect to f, then S
has the Northcott property with respect to f as well.

Proof. The following is a straightforward adaptation of the proof of [8, Thm. 2.1]. For the sake of completeness,
we provide the details. Let X > 0, and « € S an element with f(«) < X. If 8 is a conjugate of « over K, then
(f1) implies f(8) = f(o) < X. Let E be an integer such that [K(y) : K] < E for any element v € S. Denote
the monic minimal polynomial of o over K by M, i (z) = ag+arz+-- Fag_1xt gl By assumption, a; € U
for any 0 < i < d. Next we will exploit that each a; is an elementary symmetric function in the conjugates
of a (over K). To this end, we first observe that there are at most d < F conjugates of a over K. By using
the properties (f2) and (f3), and the fact that a continuous function attains its maximum on a compact set,
we infer that f(a;) is bounded from above in terms of X, E and the function F(-,-) for all 0 <4 < d. Since U
has the Northcott property with respect to f, there are only finitely many such (ag,...,aq_1) € U%. Hence the
number of « € S with f(«) < X is finite for any X > 0. O

The most important case is when K = Q and U = Q or U = Z respectively, from which it follows that
each number field has the Northcott property with respect to h(-), and the ring of integers of each number field
has the Northcott property with respect to the house M. We point out two further immediate consequences of
Lemma 5 for the Weil height and the house.

Remark 1. Suppose that K C L are fields of algebraic numbers and that [L : K| is finite. We have

(a) Np(K) = oo if and only if Nj(L) = oo,

(b) Nm(Ok) = oo if and only if Nm(OL) = oo
However, the Northcott number with respect to the Weil height and the house is mot preserved under finite
extensions in general. Indeed, log N(Ogir) > Ni,(Q) > Llog((1+ v/5)/2)) by Schinzel’s result [22, Theorem

2] but Q' (v/~1) contains infinitely many roots of unity, and hence, log Nm(Oger(/=1)) = Np(Q"(v/~1)) = 0.

Next we describe a general characterisation of the Northcott number of a set that is represented as a union
of an infinite nested sequence of sets. Let f: Q — [0,00). For each set S C Q we set

07(S) =inf{f(a);a € S}.

Let Ag C Ay C Ay C --- be a nested sequence of subsets of Q, and we set A = U;>04;. The next lemma
shows that this quantity, capturing the relative behaviour of the height function at each step, determines the
Northcott number of A under fairly mild assumptions.

Lemma 6. Suppose that N3(A;) = oo for all i € Ng. We have’
1— 00

7Of course, if the sequence (A;); becomes stationary, so that 07 (As\A;_1) = oo for all large enough i, then the right hand-side
is interpreted as oo.
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Proof. Since Ny(A;) = oo for all ¢ > 0 we conclude that Ny(A) < liminf §¢(A;\A;—1). To prove that Ny(A) >
liminf d7(A;\A;—1) we can assume that Nj(A) < oo. There exists a sequence (a;); C A of pairwise distinct
elements with (f(c)); converges to Ny(A). For a; we set ¢ = t(e;) = min{l;; € A;} so that oy € A\A,—1.
Hence,

(2.1) flai) 2 0p(ANA 1)
Since Ny(A;) = oo for all ¢ we infer that © — co as i — co. As the left hand side in (2.1) tends to Nj(A) the
claim drops out. O

3. A LOWER BOUND FOR THE MAXIMUM OF A UNITARY COMPLEX POLYNOMIAL ON GIVEN POINTS

For d € N let
G
d = €Xp d

Definition 2 (Finite discrepancy). For & = (£1,...,&4) € C? we set

(3:2) D(g) = inf max min ¢ — 6(C])l,

denote a primitive d*"-root of unity.

where ¢ runs over all rotations about the origin (i.e., ¢(z) = uz for some u € T = {c € C;|c| =1}).

Note that D(€) is invariant under permutation of the entries of &€ - a fact that will be used in the sequel without
further notice. The multiplicity, on the other hand, is important: D(&) = ||¢] — 1] but D(£,€) = /1 + €]
Also, note that D(€) = 0 if and only if &,...,&; are perfectly equidistributed on the unit circle, i.e., if

{&1,..., &} = {0(Ca),- - -, 0(¢2)} for some rotation about the origin ¢.
Lemma 7 (¢*-lower bound). Let & € C? and suppose B(x) = by + bz + - -+ + b,a™ € Clx] has degree strictly

less than d. We have
32 d—2 2
o B(6)] > (1= 2D() ma 1,161 ) |3 b

If n =0 then we can omit the first factor.

Proof. Note that the statement is trivially true for d = 1. So we can assume d > 2. First, let us assume that
& = ¢y for 1 <i < d. We observe that

(g o) =5 5

Since

BEE= Y wui= Y bbic*,

0<k,I<n 0<k,I<n
we conclude that
k=)
max |B( b > ¢
(i) 22 S i 3 6
0<kl<n 1<i<d

The inner-most sum vanishes unless d | k — . Because n < d this can only occur if £ = [, in which case the
inner-most sum equals d. Using this and taking the square-root completes the proof in this case.

Now we note that the same estimate holds true if, D(£) = 0 i.e., if, after relabeling, & = u¢} for some fixed
u on the unit circle. Indeed, B(&;) = B(u¢?) = B(¢3) with B(z) = bo + byuz + - - - + byu™z", and the coefficient
vectors of B and B both have the same ¢2-norm.

Next we consider the general case. Using the trivial estimate and the previous special case we obtain

max [B(&) >sgp(max B - s, min [B(6) - B )

1<j<d 1<i<d

> Z |b;]2 — 1nf max min |B(&) — B(6(C)).

<j<d 1<i<d
0<i<n

Hence, it suffices to show

(3.3) inf max min |B(&) = B(o(C1)) < D€)d™? max {1,1&(}~ /0; b2
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Let v denote the (complex) line segment connecting a point ¢ € T with an arbitrary point £&. We use the
parametrisation y(7) = (1 — 7)¢ + 7¢€ with 7 € [0, 1]. By using the complex line integral of B along v, we write
B(§) — B(¢) = [, B'(r) dr. Hence,

(3.4 1B - BOI <16~ (| max [B'(+(7).

Further, as |¢| < max{1,|{|}, we have |y(7)| < max{1,|{|} for any 7 € [0, 1]. By the Cauchy—Schwarz inequality,

(3.5) Byl <n | Y0 @F [ bil? < dPmax{L, €372 [ bif>

0<i<n 0<i<n 0<i<n

Combining (3.4) and (3.5), with £ = &; and { = ¢(Cfi), while using max{1, |§|} < maxi<;<q{1,|§|} the inequality
(3.3) drops out. This proves the lemma. ]

Next we derive a corollary. Recall that | - || denotes the maximum norm on C.

Corollary 8. Let £ € C%\ {0} and suppose that B(z) = by + b1z + - - + b,z € C[x] has degree strictly less

than d. [L e have
max |£ (gl) > (1 d / l ( )) z | i €
1<Z<d | H€H <i<n H || |

If n =0 then we can omit the first factor.

Proof. Apply Lemma 7 with &€ and B(z) = by + byxz + - - - + b,2™ replaced by HE%H and B(z) = B(||€]z). 0

Decomposing B(z) = ZjEJ bjxj + Zng brz* and applying Lemma 7 or Corollary 8 to Z]GJ b; ;2) sometimes
allows to produce non-trivial results, even when deg B > d. Let us record here only the special case when all &;
lie on the unit circle.

Corollary 9. Let & € T?, and suppose B(z) = by + byx + - - + b,x™ € Clz]. Then for every I C {1,2,...,d}

and each non-empty J C {0,1,...,n} with max;c;j —minjcsj < #I we have
)3/2
max [B&)| > (1= #D*?Dr) [3 ] 1bi[2 =3 bl
JjeJ k¢J

where Dy = D((&)ier)-
4. APPLICATION TO (GALOIS ORBITS AND LOWER BOUNDS FOR THE HOUSE

In this section we apply the results of Section 3 to a diophantine setting. Throughout this section let K be
subfield of Q, £ € Q\{0}, and d = [K (&) : K|. Let us write

Mk = (v —&)-- (v — &) € K[z]
for the monic minimal polynomial of £ over K with conjugates £, ...,&; over K. Recall that
Hom(K) = {0 : K — C; field homomorphism}.
For each o € Hom(K) let
TLos- - Tdo € Hom(K(£))
be the d extensions of o from K to K(§), and set
T5(§) = (11,6(8),- -+ Td,0(£))-
So the components of 7, (§) are precisely the d distinct roots of the irreducible polynomial o(M¢ i) € o(K)[x].

Lemma 10. Let O be a subring of Ok, and let & be a non-zero algebraic integer. Suppose that P(z) =
ap + a1z + -+ apa™ € Olx] is of degree 1 < n < d, and let o = P(§). Then we have

@2 e (1070 () otanl (o)1

c€Hom(K)

Proof. We have

[@l > max max  |1(P(§))| = II{naX( max  |o(P)(7(£))]-

" o€Hom(K) T€Hom(K (£)) K) t€eHom(K (&))

Tl=0 Tik=c

Due to Corollary 8, the right hand side is at least

(46) e (e (Z)) | 2 Jeteoimr

0<k<n

1/2

The second factor is, trivially, at least |o(a,)| |7+ (£)]|™, which proves the claim. O
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We now introduce a new invariant for the tuple (K, &).

Definition 3. Let

(4.7) o = _guin min{lre Ol Ime(©1) (120 (L2 ).

seHom(K) 75 ()l

Remark 2. The quantity n(K,§) can also be expressed in terms of the minimal polynomial M¢ g. For M =
(x—a1) - (z — aq) € Clz]\C, not a monomial, define

(1) = min{a) a1 (1= @20 (121,

lexll

where o = (o, ..., aq) € C2\ {0}. We have

K &) = i M,
n(K,§) Uegégl(m%(a( €.K))s

where (M k) is understood to be applied coefficient-wise. This shows that n(K,&) = n(L,§) whenever Mg x =
Me 1. In particular, if [K() : K] = [Q(§) : Q] then
(4.8) (K, &) = n(Q,¢).

Our next result is key to determine the Northcott number of various examples, including those leading to
Theorem 1. Roughly speaking, 7(-,) will provide a lower bound for the house of “new elements” in extensions
as required to apply the general Lemma 6.

Proposition 11 (Key Proposition). Let O be a subring of Ok, let & be an algebraic integer but not in Ok,
and suppose that M¢ i € Olz]. Then we have

Proof. Suppose o € O[¢]\O. Since Mg € O[z] we can choose a polynomial P € O[z] of degree 1 < n < d
such that a = P(§) = ag + a1€ + - - + a,&". From Lemma 10 we conclude that

@z o (1= (g )) el

As a, # 0 is an algebraic integer there exists 0 € Hom(K) such that |o(a,)| > 1. Noticing that ||7,(£)||™ >
min{||7, ()|, |7+ ()[|4"'} completes the proof.

For any eligible choices of K the hypothesis ensures that the minimal polynomials of £ over K, and over the
field of fractions of O are identical. Hence (K, ¢) is independent of the particular choice of K.

5. PROOF OF THEOREM 2

With Proposition 11 at hand, we can now easily prove Theorem 2. Recall that (¢;); is a sequence of algebraic
integers, Oy is a ring (containing 1) of algebraic integers,

Oi = 00[517 .o 7€i]7 and O = U OZ = 00[51u£27§37 .. ]
i>1
The field K; is the field of fractions of O;, and by hypothesis Mg, k, , € O;_1[x]. Moreover, d; = [K;_1(&;) :
K;_1] > 1, and thus &; ¢ Ok, ,. From Proposition 11 we conclude that
(01 [&\Oi—1) > n(K;-1,&).
Applying Lemma 6 with A; = O; proves Theorem 2.

6. APPLICATIONS OF THE EQUIDISTRIBUTION METHOD

In this section we discuss a few special cases of Theorem 2. Recall that by Northcott’s Theorem (cf. Lemma
5) one has N(O) = oo for any ring of algebraic integers O, whose field of fractions has finite degree over Q.
We will use this fact without further notice.

Corollary 12. Let (p;)ien, and (d;)ien be two sequences of primes, and suppose the primes d; are pairwise
distinct. Let & = pz/di be any d;-th root, O; = Z[&,...,&], K; be the field of fractions of O;, and let
O = Uiz10;. Then n(Ki—1,&) = n(Q, &) =&, and Nn(0) = liminf; o [&].

Proof. Let liminf; .. [§;] =t € [1,00]. Since the &; are pairwise distinct, we get N7(O) < t. We derive, by
Eisenstein’s criterion and the tower-law, that d; = [K;—1(§) : K;—1] = [Q(&) : Q). Hence, M, i, , = M¢, g €
O;_1[x], and n(K;_1,&) = n(Q,&;). As the d; conjugates [&;] (jéi of &; are perfectly equidistributed on the circle
of radius [£;] about the origin, we have 7(Q, &;) = [&;]. Thus, Theorem 2 implies No(O) > t. |
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Next we consider a generalisation of Corollary 12. To reduce clutter we define for each non-zero algebraic
number £ the unordered tuple of normalised conjugates

ce= ().

where d = [Q(¢) : Q] and &1, ...,&; are the conjugates of . We remind the reader that D(c¢) is well-defined
as the finite discrepancy D(-) is indifferent to the order of the components. Before stating the result let us
informally discuss what we would get by applying Theorem 2 in the most naive way.

Let (v;); be a sequence of algebraic integers of degree m;, let & = %1 M be a n;-th root of v;, and suppose
that [K;-1(&) : K;—1] = m;n; > 1. Applying Theorem 2 yields

N(O) = liminf (K1, &) = liminf n(@, &) = lim inf ] (1 = (mini)*/2D (c,))

If lim; o0 (min;)3/2D (c¢;) = 0 then we conclude that N7(0) = liminf;,[&]. In general the best shot at
the former equation we have is Lemma 15 (further below in this section), which ensures the required condition
provided

lim m; “n;’"D (c,,) = 0.

o0
Hence, we need the normalised conjugates c,, of ; to converge very rapidly to a perfect equidistribution as i
gets large.

However, Theorem 2 allows us to consider the conjugates of ; over K;_; and of & = fyil ™ over Ki_1(v)

separately. Now the conjugates of & over K;_1(v;) are perfectly equidistributed and those of ~; over K;_; are
much easier to control than those of §; over Q. In this way we can relax the above condition to

3/2 _
mi/ D(cy,) < 1—pppt/mt
for all sufficiently large 7. Here is the precise result.
Corollary 13. Let (v;); be a sequence of algebraic integers of respective degree m; with conjugates ’ygi), e ,%(fl)i,

and with smallest (complex) absolute value s; = minj<j<m, 'y](i)|. Let (n;); be a sequence of integers > 1, and

choose a n;-th root Vil/ni for each i € N. Suppose that the following four properties hold
b [@(,ﬁ/m’ e 77;/7”) : Q] = ming - - -myn; for each i € N.

e D(cy,) < m;?’/z(l — /™1 for all but finitely many i.

e s; > 1 for all but finitely many 1.

S 1/711’
e lim <Z) =1.
i—oo \ [V;]

With O = Z[vil/ni;i € N, we have
NE(O) = lim inf /™.
1—> 00

Proof. Let ig > 1 be an index such that the second and third condition is satisfied for all ¢ > ip, and set
OO = Z[’)/Zl/nl,Z S Zo]. For i € N set 527;_1 = Yi+io and 527; = ’)/H/_?OJF 0
distinct. Thus N7(O) < liminf; o [€2i]

To prove the reversed inequality we let O; = Og[&1,. .., &;], and we write K; for the field of fractions of O;.
The first condition implies that the minimal polynomial M¢,, , k,, , has coefficients in Z, and that

. Since njy, > 1 the &; are pairwise

M£2i7K2i—1 = g"itio — Yitio = it — £2i—1~
Hence, ]\4gi7[{i71 S Oi_l[l‘] for all 7 € N, and fgi ¢ OKZi—l as Mjti, > 1. Moreover, if §2i—1 € OKM—Z then
Miti, = 1 and thus &;_1 € Z C Op. Hence, we can assume without loss of generality that &; is not in Ok, ,.
Thus we can apply Theorem 2, and it suffices to check that liminf; o n(K;_1,&;) > liminf; . [€2;]. Note that
the first condition implies [Ko;_2(£2;—1) : Kai—2] = [Q(&2:—1) : Q]. Hence,

1 MNi4i
N(Kai—2,&i-1) = 1(Q, &2i-1) = Mitiol(1 — m?J/jOD (Criviy)) = %ii[ﬁr °| = [&il,

using the second hypothesis. o
Finally, note that by the first hypothesis each ¢ € Hom(K9;_1) maps 7+, to a conjugate 7,(:“0), and thus

the n;44, extensions 7; , of ¢ map &; to the n;y;, perfectly equidistributed complex numbers fy,(c“”o) o ,l““o

with 1 <1 < mn;,,. Therefore, using the third condition, we have for all s € N that

) Mitig—1 1/niqq, Unisag Sicrig 1/nitqg . Sitig 1/mitag
W(KQi—hfzi) = min {5i+i0, Sitio } = Sitio = Tm Yi+io 0= Tm @7
and thus by the fourth hypothesis lim inf; o 7(Ko;_1,&2;) > liminf; o [Eo4].
O
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Next, note that Theorem 2 requires that all O; have the Northcott property (with respect to the ) but
nonetheless Oy may be an infinite ring extension of Z. J. Robinson has shown that the ring of integers of the
composite field of all real quadratic number fields has the Northcott property. Various other examples have
been established in [3, 6, 7, 30]. Theorem 2 allows to extend the Northott property of these rings Oy to certain
bigger rings, or alternatively, to create ring extensions of these Oy with prescribed finite Northcott number.

Corollary 14. Let Oy be a ring of algebraic integers, and let (&;); be pairwise distinct algebraic integers.

Let O; = Oglér,...,&], let K; be the field of fractions of O;, set O = Op[&1,£2,&3,...], and suppose that
[Ki—1(&) : Kiea] = [Q(&) : Q] = d; > 1. If Nq(Ok,) = oo, then

lim inf[&;] > Af(O) > lim inf[&;] (1 ~d**D (c&)) .
11— 00 71— 00
l/dl

In particular, if n; are rational integers, and the elements & = n, have degree d; > 1 over K;_1, then

N7(0) = liminf; |n;/di|.
Proof. First note that by Lemma 5 (cf. Remark 1) we conclude N5(Ok,) = oo, and thus NM7(O;) = co. Now
note that

3/2
and Mg, k,_, = Mg, 0. Hence, the claim follows from Theorem 2. (I
We end this section with some simple estimates for the finite discrepancy, one of which (Lemma 15) has
already been used in the paragraph after the proof of Corollary 12 to motivate Corollary 13. We believe they

might also be useful for further applications of Theorem 2. We first introduce a slight refinement of the finite
discrepancy. For £ € C? and u € T we set

— ; ]
Du(§) = max min |& —uCyl,

so that

(6.9) D(&) = inf Dy(8).

For fixed & € C¢ the function D, (£) is continuous in u. Since T is compact if follows that there exists u € T
such that

(6.10) D(€) = Du(&)-
Lemma 15. Let n,m € N. Let a = (a1, ..., am) € C™, and suppose that D (o) < 1/2. Then we have
2
1/n .0
D ((<ak> ) 112,22?) < D(a).

Note that the left hand-side is independent of the particular choice of the n-th root.

Proof. By (6.10) we can choose u € T such that D, () = D (). By (6.9) it suffices to prove that
n 2
(6.11) Dyi/n <<(ak)1/ cﬁ) 1<k<m) < =Dy (a).
1=<6<n n
After reordering the coordinates of «, there exists for each 1 < k < m a real number § satisfying 0 < § <
D,(a) < %, and a real number ¢ such that
o = (fqu + et

Thus we obtain
akl/n _ (Cyknu+56i<p)1/n _ Crlf;rlsm ul/n (1 +5ei@')1/n’

for some integer 1 < s < n and some real number ¢’. The generalised binomial theorem implies for any complex
number z, with |z| < 1, the Taylor expansion

(1+z)1/”:1+2(17/n”>zr where (%”) B i) RS G Glnt) forr > 1.

7l
r>1
Further,
(11 —_1)=41
‘(1/n>’n( 2 D= 1y
r 1 2 T n
Consequently,
.y 1 1 6 20
1+ de'? 1/”—1‘<— o=~ < =.
‘(+6 ) _nz n(l—¥9) " n
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Finally, note that for any fixed 1 < s < n, the expression Cﬁ;i‘fmul/"(ﬁ = Q]ﬁ;}(“s)mul/”, for 1 <k <m and
1 < ¢ < n ranges over all elements 7, u'/™ for 1 <r < mn. This leads to (6.11), hence gives the result.
O

Lemma 16. Let n,m € N be coprime, let a = (a1,...,0m) € C™, B=(b1,...,0n) € C*. Then we have
D ((anB)zien ) < (1+ D(@))(1+D(B)) ~ 1.

Proof. By (6.10) we can choose u,u’ € T such that D, (a) = D () and D, (8) = D (8). By (6.9) it suffices
to prove that

(6.12) Do ((aBe) ) < (1+ Du(a))(1+ Dw(B)) — 1.

1<k<m
1<¢<n
After reordering the coordinates of a and B we can write ay = (¥ u + 6xe™* and By = Clu’ + 526“”2 for certain
non-negative real 0y, 0, and ¢y, ¢} satisfying 0 < 6 < Dy (), 0 < &) < Dy (B).
Further

(CE u+ 6™ ) (Cou! + 526“02) = Pt + ey
where |eg ¢| < 0 + 6y + 610 < (14 Dy(a))(1+ Dy (8)) — 1. By coprimality of m and n, the exponent kn + ¢m
represents all residue classes modulo mn as 1 < k < m and 1 < ¢ < n. This proves (6.12), and hence the
lemma. O

7. FROM ARBITRARY RINGS OF ALGEBRAIC INTEGERS TO INTEGRALLY CLOSED SUBRINGS

In this section we record two classical results that provide a strategy to show that a ring of algebraic numbers
is integrally closed, i.e., is the ring of integers of a field.

In the first step we need to identify when a given algebraic integer 6 of K generates the ring of integers Ok
over Z. There are at least three such criteria in the literature - Dedekind’s, Uchida’s and Liineburg’s criterion
(cf. [26]). For our purpose Dedekind’s classical criterion is well suited (cf. [14, Theorem 1.1]).

Lemma 17 (Dedekind’s criterion). Let 6 be an algebraic integer, and let My g be its minimal polynomial over Q.
Let K = Q(0), and let q be a rational prime. Let My g be the reduction of My g modulo q and My g = 7" ... 0"
be the decomposition of My g into irreducible factors over the ring of polynomials F,[z] over the field with q
elements. Let p;,g € Z[x] be such that
Mg = pi' - " +ayg

and fi; = @; for all i < k. The following are equivalent:

(1) The prime q does not divide [Ok : Z[0]).

(2) For alli <k, either e; =1, or ¢; 17 in Fylx].

Next we require a criterion to factor the ring of integers of a compositum into a product of rings of integers. If
O is an order of a number field K then we write Ao for the discriminant of that order, and just Ax if O = Ok
is the maximal order. For subfields K and F of Q we write K F for their composite field. The next statement
can be found in [9, Proposition I11.2.13].

Lemma 18. If F, K are number fields and linearly disjoint over Q, with (Ap,Ax) =1, then Oxpr = Ok - O
where the right hand side denotes the smallest subring of (9@ containing Ok and Op.
. o . 1/dy  1/da 1/dg .
We will apply these general criteria to rings of the form Z[p;"™, py’ %, p3’ ™%, .. ], where d; and p; are suitably
chosen primes. To this end we first need to compute the modulus of the discriminant Az[p? /i)

Lemma 19. Let n € N, suppose x% —n € Z[z] is irreducible, and let § € Q be one of its roots. We have
|Agjg)| = d'n"

Proof. Note that the minimal polynomial My g of # is given by Higd (a: — (29). Thus

(7.13) Az =TI @o-coyj=1o"=21| I a-&7).
1<i,5<d 1<i,j<d
i#] i£]

Using the basic identity
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and that for any fixed 7 < d the relation {Céfj; j<d,j#i} = {Ci; Jj < d— 1} holds, we see that

d
T a-¢- (H <1—<;>> —a
1<i,j<d i<d

i#]
The latter in conjunction with (7.13) shows that |Azg| = nd=1d?. O

Next, we apply Dedekind’s criterion in our setting. It shows that if p and d are distinct primes and the

Fermat quotient pd7;_1 is not divisible by d then the field Q(pl/d) is monogenic.
Lemma 20. Let p and d be odd primes. Put 6 = p'/¢ and K = Q(0). If d*> { p® — p then Ok = Z[0)].
Proof. 1t is well-known that Azpe) = Ak [Ok : Z[A]]?. Hence, in order to rule out that [Ok : Z[0]] > 1, it suffices

by Lemma 19 to check that p,d { [Of : Z[]] as 2% — p is irreducible in Z[z] by Eisenstein’s criterion. We use
Lemma 17 and its notation, with Mpy ¢ as above. Next we study the two critical cases ¢ = p and ¢ = d separately.
Case ¢ = p: Then My g = 2¢ = ¢ with p =, and g = —1. So ¢ 1 7.
Case ¢ = d: Then My g = 2% — p = (v — p)? = p¢ with u =z — p, and
d
i

d

d d d d—1
_at=p—(x—p°* _p'-p
9= = -
i=1

y wd_i(—p)i.

So ¢ | g if and only if g(p) = 0. Nowy(p):pi%p—():pi%p#(). O

Next we want to show that for given T' > 1 and each prime d; sufficiently large, there exists a prime p; such

that the sequence p; /di converges to T in a prescribed way (i.e. from above or from below). But we also want
di—1
the fields Q(p} / di) to be monogenic, and so we need that the Fermat quotients 7 L are not divisible by d;.

We use the observation % = 1 (mod d), for any odd prime d, which follows from a straightforward

computation (see the proof of the next lemma). Thus, to achieve the required monogenicity it suffices to have

(7.14) pi=d; —1 (mod d?).

Lemma 21. Let d be an odd prime. We have % =1 (mod d).
Proof. First, note that
d—1 d—1\ ; d—1—j d—1 d—2 d—1\ i1 d—1—j
d-1t= Y ) (-1 = ()T 4 (d = Dd(-1)T P d )@ (—1)d
o<j<d-1 N 7/ 2<j<d-1 7

Because d is odd, the first two terms simplify to 1 — d(d — 1). Hence,

(d-1)"" -1 d—1\ 2 d—1-j

=1+d( -1 2 (—1)d 1
y + + 2 (-1)
2<j<d—1

which implies the claim. (I

A straightforward application of the Siegel-Walfisz Theorem, see [12, Cor. 5.29], guarantees the existence of
the required primes p; in the right interval, and the prescribed residue class.

Lemma 22. Fix T > 1. If d is a sufficiently large prime in terms of T, then there exist a prime p in the
interval (T4,2T%) and one prime p in the interval (T?/2,T%) such that in both cases p=d — 1 (mod d?).

Proof. Let w(x;q,a) denote the number of primes p < z that solve the congruence p = a (mod ¢q). Let ¢ denote
Euler’s totient function, and let
xT
d
Li(z) = / T
5 logT

The Siegel-Walfisz theorem states for any N > 1 and ¢ > 1 we have

; a—Li(m) z(logz)™N
W(w7Q7 )_ QO(Q) +ON( (1 g ) )

uniformly for all 1 < a < ¢q with (a,q) =1 for any > 2. We will only check that
72T d? d — 1) — n(T%d?,d — 1) > 2.
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Here the 2 ensures that we have an element in the open interval (7%, 27¢). The case m(T%d?,d — 1) —
7(T?/2;d?,d — 1) > 2 is shown similarly. Thus, specialising = 7% and N = 4, we infer that

s d=1) - sleid =) = S5 - S0 ()

1 /QI dr Lo T
©p(d?) ), logT (logz)*) "

Because d = (logx)/log T, we have

1 2 4r 1 x x
> > (logT)* —————.
o(d?) /gg log T logz \ 2 log(2x) (log T) (1+logz)?
<10gT)
Since d is large (and hence = as well), this implies 7(2z;d? d — 1) — w(x;d?,d — 1) > 2. O

We can now deduce:

Lemma 23. Let (p;,d;); be a sequence where both components are prime, min{p;y1,d;+1} > max{p;,d;} for
all i, and such that Oge,) = Z[&;] with & = pi/d". Then with K = U;>1Q(&1,...,&) and O; = Z[&y, ..., &) we
have O = U O;.

i>1

Proof. Set K; = Q(&1,...,&). The only primes that ramify in K;_; are p1,ds,...,pi—1,d;—1. Hence we have
(Ak,_,,Aqe,)) = 1. Moreover, K;_; and Q(&;) are linearly disjoint over Q since their degrees di---d; 1
and d; are coprime. We conclude from Lemma 18 that Ok, = Ok, _, - Z[§], and hence by induction Ok, =
Z[1, ..., &] = O;. This proves that O = U;>10;. O

8. PROOF OF THEOREM 1

We use the specific construction given in Corollary 12 with additional constraints on the primes p; and d; as
required to ensure the specific properties.

(a): Let (d;); be a sequence of strictly increasing primes. Combining Lemma 20, the congruence condition
(7.14), and Lemma 22, we see that for each i large enough there exists a prime p; € (t%/2,t%) such that

OQ(p;/di) = Z[p;/d"]. We select a subsequence of (p;,d;); to ensure min{p;y1,d;+1} > max{p;,d;} for all 4.

Set & = pi/d", O; = Z[&y, ..., &), and O = U;0;. The & are pairwise distinct, and 2-%/%¢ < [§] < t. Thus
#{a € O;lal < t} = oo, and it follows from Corollary 12 that N(O) = t. Finally, by Lemma 23 we see that
Ok = O. This proves the existence of a field K with M7(Ok) = ¢ and satisfying (a).

(b): To construct a field K with M7(Og) =t and (b) we proceed in the same manner but choose the primes
pi € (t%,2t%), so that by Corollary 12 n(K;_1,&) = [&] € (t,2'/9¢). Tt follows from Proposition 11 that
#{a € Og;la < t} < o0.

Now suppose € > 0 and M — ¢ < (t — 1)/2, and suppose o € O with t + € < [al < M. Clearly, there are
only finitely many such « in Op, so we can assume a ¢ Op. Thus a € 0;\O;_; for some i € N. Note that
d; = [Q(&) : Q]. Hence, there exists P = >, axz® € O;_1[z] of degree 1 < n < d; such that a = P(¢;). Since
Mg, g, ,(x) = Mg, o(x) = 2% — p; € Q[z] it follows that the d; distinct roots of o(Mg, , ,)(x) are perfectly

equidistributed on the circle |z| = [&] = pi/“, and therefore D (H:UE?;H) = 0 for all 0 € Hom(K;—1). By

Lemma 10 we conclude that @ > [§]" > ", and thus ¢" < t 4 (t — 1)/2. This forces n < 2 and thus n = 1. So
a = a1&; + ag. Again, by Lemma 10 we get that [l > |o(a1)||] for all ¢ € Hom(K;_1), and thus [al > [ag] - [§;].
It follows that M > fal > [a1]-[&;] > [@1]- ¢, and thus @) < M/t < 1+ (t —1)/(2t) <1+ (t —1)/2 < t. Hence
there are only finitely many possibilities for a; € O, in particular, there is an element with smallest house > 1.
We can assume that M/t is below the smallest house value > 1 for such elements ay. This forces [a] = 1, which
in turn implies that all archimedian absolute values are equal to 1 since a; is integral. _

Next note that the sectors bounded by the d; rays starting at 0 and joining the conjugates @C{;i partition the
complex plane. Consider the sector that contains o(ag) where o € Hom(K;_1) is such that [ag] = |o(ag)|. Due
to the coprimality of the degrees d; there exists an extension 7 € Hom(Kj;) of o that sends a1&; to a conjugate
that lies in the same sector as o(ag). It follows that [al > |7(a1&; +ag)| > |7(a1&)| + | cos(2w/d;)o(ag)|. We can
assume that d; > 6 and thus cos(27/d;) > 1/2. Hence we conclude M > [al > [¢;] + [ag)/2. Moreover, we can
assume that M < t+1/2. As[§;] > t and ag is integral we conclude that ag = 0. Thus ¢ + ¢ < lal = [§;] < 21/ dig,
and thus ¢ is bounded in terms of e. Hence, there are only finitely many choices of «, and this proves part (b).

(c): And finally, to construct a field K with the third property we take a sequence (T;); of real numbers

that converges to ¢t from above. For each T; we construct a sequence (p;j,d;;); with p;; € (Tidi'j,2Tidij) and

OQ (o 4iy = Z[pij/ di ]. A slightly modified Cantor diagonalisation argument allows us to construct a sequence
Pij



14 FABIEN PAZUKI, NICLAS TECHNAU AND MARTIN WIDMER

(Pm dm)m that contains infinitely many elements from each sequence (p;;, d;;);, and satisfies min{p, 41, dm+1} >
max{pm,dnm} for all m. With &, = p},{d’” we conclude from Lemma 23 that O = O = Z[¢,,;m € N]. Now
by Corollary 12 we get N7(Ok) = t, and by Proposition 11 we see that [al > ¢ for all & € Og\Z. And, finally,
since each T; is a limit point of (&, ])m we see that #{a € Ok;t+e <lal< M} = oo for all M > ¢ and all € > 0

sufficiently small. This finishes the proof of Theorem 1.

9. PROOFS OF THEOREM 3 AND THEOREM 4

Theorem 3 and Theorem 4 both use Lemma 6 applied to a common setting, with the sets A; defined as
follows. Let (p;); and (d;); be sequences of prime numbers. Let p}/ % he any choice of a d;-th root of p;. We
set A; = K; where Ko =Q and K; 1 = Ki(p;/di), and we write K = U; K.

Lemma 24. Lety > 0, and recall that h(a) = (dega)Yh(a). Then Ny (K;) = oo for all i € Ng. Moreover, if
pi ¢ {d1,p1,...,di—1,pi-1} then

log p; log d;
KN\K;_1)>d] — )
On, (K\Ki-1) 2 d; ( 2d;  2(d; — 1)

Proof. First note that N, (K;) = co by Northcott’s Theorem. Next let us prove the inequality. Since only
primes in {d1,p1,...,d;—1, pi—1} can ramify in K;_; we conclude that p; is unramified in K;_1, and hence xdi —Di
is an Eisenstein polynomial in Ok, _, [z]. Thus, [K; : K;_1] = d; is prime, and we conclude that K;_;(a) = K;
for any a € K;\K;_1. An inequality of Silverman [24, Theorem 2] (see also [30, (5)]) implies that

log(Nxk,_, 0Dk, /x, _
h(a) > 08(Vi: 1 /0(Dxi/Ki 1)) _ logd; 7
Q[Ki—l : Q]di(di — 1) Q(di — 1)
where N, ,/o(-) denotes the norm and Dy, /k, , denotes the relative discriminant. A straightforward calcu-
lation shows (see [30, Proof of Theorem 4]) that p[Kzel:Q](di

i

Y divides Nk, ,/0(Dk,/k,_,)- Hence,

log p; log d;
h > — .
(@) =5 " 5@ =1
Finally, we note that deg(a) > [K;_1() : K;—1] = d;, and hence

log p; log d;
On (KG\K;_1) > d] — .
o (Ki\Kim) 2 d; ( 2d; 2(d,--1)>

We are now ready for the proof of Theorem 3:

Proof of Theorem 3:
Let (p;); and (d;); be sequences of primes and the p; strictly increasing such that log(p;)/d; converges to 2t.

It follows that p; ¢ {d1,p1,...,di—1,p;—1} for all sufficiently large i. Set Ky = Q and K; = Ki71<pg/di) as

at the beginning of this section. Applying Lemma 24 with v = 0 we conclude that lim inf 6, (K;\K;—1) > t,
and hence by Lemma 6 we get AN, (K) > t. For the remaining inequality we note that pg /% are all integral
(and all distinct for sufficiently large ¢) with height log(p;)/d; converging to 2¢t, and thus we immediately get

Ni(K) < Nu(Ok) < 2t. O

For the proof of Theorem 4 we need the following two lemmas.

Lemma 25. Let 0 < v < 1, and let (p;); and (d;); be sequences of prime numbers such that dﬂ*l(logpi —

logd;) — o0 asi — oo, and p; ¢ {d1,p1,...,di—1,0i—1} for alli >1iy. Then L = Q(pl/di;i € N) is y-Northcott.

7

Proof. Since

£ logp;  logd, _ 1 [logp; —logd; log d; S 1 (logp; —logd; 1
"\ 2di-1)) 2 ;" 41— 1/dy) ) T 2 d; 7 ’
it follows from Lemma 24 that for i > iy we have
1 (logp; —logd;
On, (Ki\Ki—1) > 3 (;1_71 —1] — o0
Hence, the claim follows from Lemma 6. (Il

Lemma 26. Let 0 < v <1, e >0, and let (p;); and (d;); be sequences of prime numbers such that dﬂ_l(logpi—
logd;) — oo and d;" " 'logp; — 0 as i — oo, and p; ¢ {dy,p1,...,di_1,pi_1} for all i > ig. Then L =
Q(p;/d"’;i € N) is y-Northeott but not (7 — €)-Bogomolov.



NORTHCOTT NUMBERS FOR THE HOUSE AND THE WEIL HEIGHT 15

Proof. Since hy,e(pil/di) = (degpi/d")V_{h(p?/d"') = d;"“'logp; — 0 the claim follows immediately from

2

Lemma 25. U

Proof of Theorem 4:
Theorem 4 now follows easily from Lemma 26 as all sequences of primes (d;); with d;11 > 2d;, and (p;); with

1—~+e/2 1—vy+e/2 . . sps
edi < p; < 2eti satisfy the required conditions of Lemma 26. O
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