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Abstract. For an algebraic number α and γ ∈ R, let α be the house, h(α) be the (logarithmic) Weil height,

and hγ(α) = (degα)γh(α) be the γ-weighted (logarithmic) Weil height of α. Let f : Q → [0,∞) be a function

on the algebraic numbers Q, and let S ⊂ Q. The Northcott number Nf (S) of S, with respect to f , is the
infimum of all X ≥ 0 such that {α ∈ S; f(α) < X} is infinite. This paper studies the set of Northcott numbers

Nf (O) for subrings of Q for the house, the Weil height, and the γ-weighted Weil height. We show:
(1) Every t ≥ 1 is the Northcott number of a ring of integers of a field w.r.t. the house · .
(2) For each t ≥ 0 there exists a field with Northcott number in [t, 2t] w.r.t. the Weil height h(·).
(3) For all 0 ≤ γ ≤ 1 and γ′ < γ there exists a field K with Nhγ′ (K) = 0 and Nhγ (K) =∞.

For (1) we provide examples that satisfy an analogue of Julia Robinon’s property (JR), examples that satisfy

an analogue of Vidaux and Videla’s isolation property, and examples that satisfy neither of those. Item (2)

concerns a question raised by Vidaux and Videla due to its direct link with decidability theory via the Julia
Robinson number. Item (3) is a strong generalisation of the known fact that there are fields that satisfy the

Lehmer conjecture but which are not Bogomolov in the sense of Bombieri and Zannier.

1. Introduction

In this article we investigate the spectrum of Northcott numbers of subrings of the algebraic numbers Q for
the house and the Weil height. The Northcott number with respect to the Weil height was introduced by Vidaux
and Videla [28], and refines the concept of the Northcott property which goes back to Northcott [15, 16] but was
formally defined by Bombieri and Zannier [3]. Northcott numbers for various other height functions have been
around implicitly and explicitly in the Bogomolov property, the Lehmer conjecture, the Schinzel–Zassenhaus
conjecture (now Dimitrov’s theorem), the Julia Robinson property, and the Julia Robinson number. To unify
all these concepts under the umbrella of Northcott numbers we start with the following obvious generalisation.

Definition 1 (Northcott number). For a subset S of the algebraic numbers Q and f : Q→ [0,∞) we set

Nf (S) = inf{t ∈ [0,∞); #{α ∈ S; f(α) < t} =∞},

with the usual interpretation inf ∅ =∞. We call Nf (S) ∈ [0,∞] the Northcott number of S (with respect to f).
If Nf (S) =∞ then we say that S has the Northcott property (with respect to f).

Throughout this introduction ring always means not the zero ring. Next we give some background on the
relevant results that use the house · of an algebraic number (i.e., the maximum modulus of its conjugates over
Q).

In 1959, Julia Robinson [19] showed the undecidability of the first order theory of any number field, extending
the case Q dealt with in her Ph.D. dissertation. A few years later she began [20, 21] to investigate decidability
questions for certain rings of totally real algebraic integers of infinite degree. To this end she introduced the
following property, nowadays called property (JR). Let O be a ring of totally real algebraic integers, and let
O+ ⊂ O be its subset of totally positive elements. The ring O has property (JR) if the following holds

#{α ∈ O+; α < N· (O+)} =∞.

As usual, x < ∞ is true for all x ∈ R by convention. Note that the Northcott property implies the property
(JR). Let N = {1, 2, 3, . . .} be the set of positive integers, and set N0 = N ∪ {0}.

Robinson showed that the semi-ring (N0, 0, 1,+, ·) is first order definable in O for any ring O of totally real
algebraic integers with property (JR) (not necessarily the ring of integers of a field, as pointed out by Vidaux
and Videla [27]). She then proved that the rings of integers OK of the maximal totally real extension K of Q,
and of K = Q(

√
n;n ∈ N) both have property (JR): the former since the infimum 4 in the definition of N· (O+

K)
is attained, and the latter since it has the Northcott property. Hence, both have undecidable first order theory.
Since the aforementioned field is a pro-2 extension of Q, it follows from a result of Videla [29], that its ring
of integers is first order definable in this field, and thus the field inherits the undecidability from its ring of
integers.
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A question that arose from Robinson’s work, explicitly proposed by Vidaux and Videla [27, Question 1.5], is,
which numbers can be realised as Northcott numbers1 N· (O+

K). Important progress on this question was made

by Gillibert and Ranieri [11] who proved that all numbers of the form [2
√

2n] + 2
√

2n or 8n, with n ≥ 1 odd
and square-free, are of this type. Further results on the distribution of the Northcott numbers N· (O+) were
obtained by Castillo [4], and Castillo, Vidaux, and Videla [5].

Another question, explicitly proposed by Robinson herself, is, if in fact the ring of integers OK of every totally
real field K has property (JR). Gillibert and Ranieri [11] noted that all their examples do have property (JR).

Vidaux and Videla [27, Definition 1.2] introduced a related condition which they call isolation property, and
which also allows, by the same strategy as for the property (JR), to define the semi-ring (N0, 0, 1,+, ·) by a first
order formula in O. A ring O of totally real algebraic integers has the isolation property if it does not have
property (JR), and if there exists M > N· (O+) such that for all ε > 0 we have

#{α ∈ O+;N· (O+) + ε ≤ α < M} <∞.

Since there are only finitely many totally real integers that assume a fixed house value t (in particular that
assume the value N· (O+)) it follows that the above cardinality gets arbitrarily large as ε gets small. Vidaux
and Videla [27] have constructed rings of totally real algebraic integers that satisfy their isolation property but
it is unknown if any of these is the ring of integers OK of a field, and so Robinson’s question also remains open.
Nevertheless, examining decidability of subrings and subfields of Q by Julia Robinson’s strategy (and refine-
ments thereof) is an active area of research. From the growing body of literature, we refer the reader to the work
(and references therein) of Shlapentokh [23], Springer [25], as well as Mart́ınez-Ranero, Utreras, and Videla [13].

Our first result shows that if we consider the full set of algebraic integers, and we do not restrict to totally
real fields, then every real number t ≥ 1 is a Northcott number with respect to the house. Furthermore, the
analogous question to Julia Robinson’s one can be answered in the negative, i.e., the infimum in the definition
of N· (OK) is not always attained. Finally, we can also construct rings of integers OK with given Northcott
number that neither have the analogue of property (JR) nor the analogue of the isolation property2.

Theorem 1. Let t > 1 be a real number.

(a) There exists a field K of algebraic numbers such that its ring of integers OK satisfies N· (OK) = t and
#{α ∈ OK ; α < t} =∞.

(b) There exists M > t and a field K of algebraic numbers such that its ring of integers OK satisfies
N· (OK) = t and #{α ∈ OK ; α ≤ t or t+ ε ≤ α < M} <∞ for all ε > 0.

(c) There exists a field K of algebraic numbers such that its ring of integers OK satisfies N· (OK) = t and
#{α ∈ OK ; α ≤ t} < ∞ and #{α ∈ OK ; t + ε ≤ α < M} = ∞ for all M > t and all small enough
ε > 0.

Since α ≥ 1 for every non-zero algebraic integer there is no ring of algebraic integers O for which #{α ∈
O; α < 1} = ∞. But, by our method, it is easy to construct fields K whose ring of integers have Northcott
number t = 1, and that satisfy either selection of the remaining two properties.

The proof of Theorem 1 comes in two steps. First we construct a ring with prescribed Northcott number
(and the additional topological features), and then we prove that the constructed ring is integrally closed (in
its field of fractions). For the latter we exploit a criterion of Dedekind, demanding our construction to satisfy
certain congruence constraints. The Siegel–Walfisz theorem about the distribution of primes in residue classes
ensures that we can satisfy these congruence conditions.

The original problems considered by Robinson, and by Vidaux and Videla (restricting to O+
K for totally real

fields K) are more difficult than those we address in Theorem 1. However, it is conceivable that the methods
in this paper are also useful to address these original questions.

Our construction of rings with prescribed Northcott number relies on our next result. Consider a sequence
(ξi)i of algebraic integers, let O0 be a ring, containing 1, of algebraic integers, Oi = O0[ξ1, . . . , ξi], and let
O =

⋃
i≥1Oi = O0[ξ1, ξ2, ξ3, . . .]. Let Ki be the field of fractions of Oi, and set di = [Ki−1(ξi) : Ki−1]. For a

subfield K ⊂ Q and an algebraic number ξ let Mξ,K ∈ K[x] be the monic minimal polynomial of ξ over K.
We introduce a new quantity η(K, ξ) which measures the largest root of σ(Mξ,K) and how equidistributed the
normalised roots3 of σ(Mξ,K) on the unit circle are for each field homomorphism σ : K → C. The definition of
η(K, ξ) is given in Section 4. We always consider lim inf as element of the extended real number line R∪{±∞}.

1Vidaux and Videla call N · (O+) the Julia Robinson number of the ring O.
2It seems natural to impose the additional condition N · (O) is attained only for finitely many elements of O for the analogue

of the isolation property in the non totally real case, since this condition automatically holds only in the totally real case.
3We say d complex points are (perfectly) equidistributed on a circle (of radius R) if they are pairwise distinct, all lie on the

circle, and the arc-length between neighboring points is 2πR/d. By “normalised” we mean scaled by the reciprocal of the largest

of their moduli.
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Theorem 2. Suppose that N· (Oi) =∞, di > 1, and that Mξi,Ki−1 ∈ Oi−1[x] for all i ∈ N. Then

N· (O) ≥ lim inf
i→∞

η(Ki−1, ξi).

Since di > 1 the ξi are pairwise distinct, and thus we also have the trivial upper bound

N· (O) ≤ lim inf
i→∞

ξi .

The simplest application of Theorem 2 is when Mξi,Ki−1
= Mξi,Q and the conjugates over Q are perfectly

equidistributed on a circle |z| = ti, e.g., if they are of the form ξ
(i)
j = tiζ

j
di

(1 ≤ j ≤ di). In Section 6 we explain

this and other applications, including a more sophisticated result (Corollary 13), that requires the full strength
of Theorem 2.

The Northcott number N· (OK) is also related to the invariant c1(K) for fields K ⊂ Q introduced by Gaudron
and Rémond in their investigations of the Siegel property for fields. This invariant is often difficult to determine;
however, they show [10, Lemme 5.4] that c1(K) ≥ N· (OK) provided K has infinite degree over Q.

They also provide an example [10, Exemple 4.6] of a field K that has infinitely many elements of bounded Weil
height but whose ring of integers has only finitely many elements of bounded house, i.e., Nh(K) <∞ = N· (OK).
Their proof of N· (OK) = ∞ relies on the (perfect) orthogonality relations of the roots of unity, and could be

adapted to handle the aforementioned simplest case ξ
(i)
j = tiζ

j
di

. Their method, has the advantage that it

can deal with integral elements in Q[ξ1, ξ2, ξ3, . . .] but, in contrast to ours, it seems restricted to the perfectly
equidistributed case, and cannot provide results such as Corollary 13 of Section 6.

The next height function we consider is the classical logarithmic absolute Weil height h(·). Again, we first
give some background, and then we state our result.

The origin of the Northcott property goes back to two seminal papers of D.G. Northcott [15, 16] from 1949
and 1950, in which he showed that there are only finitely many algebraic numbers of bounded degree and
bounded Weil height h(·), and proved the finiteness of the number of preperiodic points of bounded degree
under non-linear algebraic endomorphisms of projective varieties defined over Q.

The Northcott property (with respect to h(·)) is well known to have many diophantine applications, and thus
it is natural to refine this concept via the Northcott number as done by Vidaux and Videla [28]. Indeed, it
is often enough to know that the Northott number of a specified set is a sufficiently large finite number. For
instance, to show that the non-linear polynomial f ∈ K[x] has only finitely many preperiodic points in the field
K ⊂ Q it suffices to know that Nh(K) > 2cf where h(f(α)) ≥ deg f · h(α)− cf . Even more concretely, for the
polynomial fn = x2n − x2n−1 + · · · − x+ 1 one can take4 cfn = 2 log 2.

On the opposite end, the first and the last author [18] have recently proved an arithmetic Bertini-type result
for which fields with prescribed arithmetic features and sufficiently small Northcott number are needed.

These observations raise the question which numbers can be realised as the Northcott number of a field or a
ring of integers of a subfield of Q. A similar question was raised by Vidaux and Videla [28, Question 6].

Question 1 (Vidaux, Videla 2016). Which real numbers can be realised as Northcott number (with respect to
the absolute logarithmic Weil height) of a ring extension of Q?

Interestingly, Vidaux and Videla’s motivation for the above Question 1 comes from their earlier question
about the spectrum of the Julia Robinson numbers (i.e., the spectrum of the Northcott numbers N· (O+

K) for
totally real fields K), and the fact that α ≥ h(α) for every non-zero algebraic integer. Given their motivation it
seems to us equally natural to propose the analogous question for the house · — a question that is completely
answered by Theorem 1.

However, back to the Weil height h(·). To the best of our knowledge, there are currently only two possible
“values” known as Northcott numbers for subrings of Q, namely 0 (attained, e.g., by Q) and ∞ (attained, e.g.,
by any number field). Here we show that the set of values cannot be sparse.

Theorem 3. Let t ≥ 0. There exists a field L ⊂ Q satisfying

t ≤ Nh(L) ≤ Nh(OL) ≤ 2t.

More precisely, every field L generated over a number field K by any sequence of roots p
1/di
i that converge to

exp(2t), and where pi and di are primes and the pi are strictly increasing, satisfies the conclusion.

For the aforementioned example fn = x2n− x2n−1 + · · · − x+ 1 ∈ Z[x], we conclude from Theorem 3 that fn
has only finitely many preperiodic points in L (with a bound independent of n), provided t > 4 log 2.

4Note that with g1 = yn and g2 = ynfn(x/y) we have xn+1 = −yg1 + (x + y)g2 and yn+1 = yg1. From this it is routine to

compute cfn .
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Finally, let us mention that Gaudron and Rémond’s Siegel property [10] is also related to Nh(K). For in-
stance, they show [10, Corollaire 1.2] that if K is a Siegel field of infinite degree over Q then Nh(K) <∞.

Our last result is concerned with Northcott numbers for differently normalised Weil heights. Many results
around the Lehmer conjecture can be expressed in terms of the Northcott number of a suitably normalised Weil
height. For example, writing µ ⊂ Q for the set of roots of unity and degα = [Q(α) : Q], Dobrowolski’s Theorem

states that Nf (Q\µ) > 0 for5 f(α) =
(

log+ degα
log+ log degα

)3
(degα)h(α). Let us now restrict ourselves to the case

where
f(α) = hγ(α) = (degα)γh(α) for some γ ∈ R.

Lehmer’s conjecture itself states that Nh1
(Q\µ) > 0. And the Bogomolov property for a set S ⊂ Q, also

introduced by Bombieri and Zannier [3], can be rephrased as Nh0
(S\µ) > 0. In analogy the first author and

Pengo [17] say the set S has the Lehmer property if Nh1
(S\µ) > 0. Generalising both properties we say a set

S ⊂ Q is γ-Bogomolov if Nhγ (S\µ) > 0, and we say S is γ-Northcott if Nhγ (S) =∞ (i.e., S has the Northcott

property with respect to hγ(·)). Note that by Dobrowolski’s Theorem the field Q (and hence each of its subsets)
is γ-Bogomolov for every γ > 1.

Amoroso’s Theorem 1.3 in [1] shows that the field Q(ζ3, 2
1/3, ζ32 , 2

1/32 , ζ33 , 2
1/33 , . . .), where ζd denotes a

primitive d-th root of unity, is 1-Bogomolov but not 0-Bogomolov. Another example, as we explain now, of
such a field is Qtr(

√
−1), where Qtr denotes the maximal totally real extension of Q. By a result of Schinzel

[22, Theorem 2] we have (degα)h(α) ≥ log( 1+
√
17

4 )/2 for every unit α in the ring of integers of Qtr(
√
−1). This

implies that Qtr(
√
−1) is 1-Bogomolov. But from Example 5.3 in [2], the sequence((2 +

√
−1

2−
√
−1

)1/k)
k≥1

has all its elements in Qtr(
√
−1) which shows that this field is not 0-Bogomolov.

This raises the question whether for every γ ≤ 1 and ε > 0 there exists a field K that is γ-Bogomolov (or
even γ-Northcott) but not (γ − ε)-Bogomolov. Our next result answers this question in the affirmative.

Theorem 4. Let 0 ≤ γ ≤ 1, and ε > 0. Choose sequences of primes (di)i∈N and (pi)i∈N such that di+1 ≥ 2di,

and d
1−γ+ε/2
i ≤ log pi ≤ log(2) + d

1−γ+ε/2
i for all i ∈ N. Then Q(p

1/di
i ; i ∈ N) is γ-Northcott but not (γ − ε)-

Bogomolov.

While the proofs of Theorem 3 and of Theorem 4 rely on a method from [30], the proof of Theorem 1 is
essentially different and is based on an equidistribution argument. However, it turns out that both methods

are particularly easy to apply for fields of the shape Q(p
1/di
i ; i ∈ N) for certain primes pi and di, and this is the

reason that all fields constructed in these three theorems are of this type.
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2. Definitions and basic properties of Northcott numbers

In this section, we introduce some notation, and collect some basic results about Northcott numbers.
We write | · | for the usual absolute value on C, and for the maximum norm on Cd we set

‖α‖ = max
1≤i≤d

|αi|.

For a field K of characteristic 0 we denote the set of field homomorphisms σ : K → C by

Hom(K) = {σ : K → C; field homomorphism}.
The house of an algebraic number α, written α , is defined as

α = max
σ∈Hom(Q)

|σ(α)|.

Next we define the Weil height. To this end let K be a number field, and let MK denote the set of places of
K, that is, equivalence classes of absolute values. For each place v ∈MK we let | · |v be the unique representative
of v that extends one of the canonical absolute values6 on Q. For v ∈MK , let Kv abbreviate the completion of

5For x ∈ R we write log+ x = log max{x, exp(1)}.
6I.e., for x ∈ Q, we have |x|v = max{−x, x} if v is archimedean, and otherwise |p|v = p−1 if v lies above the prime p.
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K with respect to | · |v. The (logarithmic) Weil height of α ∈ K is given by

h(α) =
1

[K : Q]

∑
v∈MK

[Kv : Qv] log max{1, |x|v}.

The product formula implies that h(α) does not depend on the ambient field K, and hence h(·) extends to a
function on Q. Further, we have h(σ(α)) = h(α) for any field homomorphism σ : Q → Q, and h(α + β) ≤
h(α) + h(β) + log 2, and h(αβ) ≤ h(α) + h(β) for all α, β ∈ Q. More generally, suppose we have a function
f : Q→ [0,∞) and that there exists a continuous function F : R2 → [0,∞) such that for any field homomorphism
σ : Q→ Q, and all algebraic numbers α, β the following is true

(f1) f(σ(α)) = f(α),

(f2) f(α+ β) ≤ F (f(α), f(β)),

(f3) f(αβ) ≤ F (f(α), f(β)).

With F (x, y) = max{xy, x + y + log 2} the properties (f1), (f2), and (f3) are satisfied for the Weil height h(·)
and for the house · . Furthermore, note that for each non-zero algebraic integer α we have

h(α) ≤ log α .

Dvornicich and Zannier observed that the proof of Northcott’s Theorem yields a more general statement, which
we state here in an even slightly more general form.

Lemma 5 (Dvornicich and Zannier [8, Thm. 2.1]). Suppose f from Definition 1 satisfies (f1), (f2), and (f3).
Let K be a subfield of Q, and U ⊂ K. Let S ⊂ Q be a set of roots of monic irreducible polynomials in K[x]
with coefficients in U and uniformly bounded degree. If U has the Northcott property with respect to f , then S
has the Northcott property with respect to f as well.

Proof. The following is a straightforward adaptation of the proof of [8, Thm. 2.1]. For the sake of completeness,
we provide the details. Let X > 0, and α ∈ S an element with f(α) < X. If β is a conjugate of α over K, then
(f1) implies f(β) = f(α) ≤ X. Let E be an integer such that [K(γ) : K] ≤ E for any element γ ∈ S. Denote
the monic minimal polynomial of α over K by Mα,K(x) = a0+a1x+ · · ·+ad−1xd−1+xd. By assumption, ai ∈ U
for any 0 ≤ i < d. Next we will exploit that each ai is an elementary symmetric function in the conjugates
of α (over K). To this end, we first observe that there are at most d ≤ E conjugates of α over K. By using
the properties (f2) and (f3), and the fact that a continuous function attains its maximum on a compact set,
we infer that f(ai) is bounded from above in terms of X,E and the function F (·, ·) for all 0 ≤ i < d. Since U
has the Northcott property with respect to f , there are only finitely many such (a0, . . . , ad−1) ∈ Ud. Hence the
number of α ∈ S with f(α) ≤ X is finite for any X > 0. �

The most important case is when K = Q and U = Q or U = Z respectively, from which it follows that
each number field has the Northcott property with respect to h(·), and the ring of integers of each number field
has the Northcott property with respect to the house · . We point out two further immediate consequences of
Lemma 5 for the Weil height and the house.

Remark 1. Suppose that K ⊂ L are fields of algebraic numbers and that [L : K] is finite. We have

(a) Nh(K) =∞ if and only if Nh(L) =∞,
(b) N· (OK) =∞ if and only if N· (OL) =∞.

However, the Northcott number with respect to the Weil height and the house is not preserved under finite
extensions in general. Indeed, logN· (OQtr ) ≥ Nh(Qtr) ≥ 1

2 log((1 +
√

5)/2)) by Schinzel’s result [22, Theorem

2] but Qtr(
√
−1) contains infinitely many roots of unity, and hence, logN· (OQtr(

√
−1)) = Nh(Qtr(

√
−1)) = 0.

Next we describe a general characterisation of the Northcott number of a set that is represented as a union
of an infinite nested sequence of sets. Let f : Q→ [0,∞). For each set S ⊂ Q we set

δf (S) = inf{f(α);α ∈ S}.

Let A0 ⊂ A1 ⊂ A2 ⊂ · · · be a nested sequence of subsets of Q, and we set A = ∪i≥0Ai. The next lemma
shows that this quantity, capturing the relative behaviour of the height function at each step, determines the
Northcott number of A under fairly mild assumptions.

Lemma 6. Suppose that Nf (Ai) =∞ for all i ∈ N0. We have7

Nf (A) = lim inf
i→∞

δf (Ai\Ai−1).

7Of course, if the sequence (Ai)i becomes stationary, so that δf (Ai\Ai−1) =∞ for all large enough i, then the right hand-side

is interpreted as ∞.
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Proof. Since Nf (Ai) =∞ for all i ≥ 0 we conclude that Nf (A) ≤ lim inf δf (Ai\Ai−1). To prove that Nf (A) ≥
lim inf δf (Ai\Ai−1) we can assume that Nf (A) < ∞. There exists a sequence (αi)i ⊂ A of pairwise distinct
elements with (f(αi))i converges to Nf (A). For αi we set ι = ι(αi) = min{l;αi ∈ Al} so that αi ∈ Aι\Aι−1.
Hence,

f(αi) ≥ δf (Aι\Aι−1).(2.1)

Since Nf (Ai) = ∞ for all i we infer that ι → ∞ as i → ∞. As the left hand side in (2.1) tends to Nf (A) the
claim drops out. �

3. A lower bound for the maximum of a unitary complex polynomial on given points

For d ∈ N let

ζd = exp

(
2πi

d

)
denote a primitive dth-root of unity.

Definition 2 (Finite discrepancy). For ξ = (ξ1, . . . , ξd) ∈ Cd we set

D(ξ) = inf
φ

max
1≤j≤d

min
1≤i≤d

|ξi − φ(ζjd)|,(3.2)

where φ runs over all rotations about the origin (i.e., φ(z) = uz for some u ∈ T = {c ∈ C; |c| = 1}).

Note that D(ξ) is invariant under permutation of the entries of ξ - a fact that will be used in the sequel without

further notice. The multiplicity, on the other hand, is important: D(ξ) = ||ξ| − 1| but D(ξ, ξ) =
√

1 + |ξ|2.
Also, note that D(ξ) = 0 if and only if ξ1, . . . , ξd are perfectly equidistributed on the unit circle, i.e., if
{ξ1, . . . , ξd} = {φ(ζd), . . . , φ(ζdd )} for some rotation about the origin φ.

Lemma 7 (`2-lower bound). Let ξ ∈ Cd and suppose B(x) = b0 + b1x + · · · + bnx
n ∈ C[x] has degree strictly

less than d. We have

max
1≤i≤d

|B(ξi)| ≥
(

1− d3/2D(ξ) max
1≤i≤d

{1, |ξi|}d−2
)√ ∑

0≤i≤n

|bi|2.

If n = 0 then we can omit the first factor.

Proof. Note that the statement is trivially true for d = 1. So we can assume d ≥ 2. First, let us assume that
ξi = ζid for 1 ≤ i ≤ d. We observe that(

max
1≤i≤d

|B(ζid)|
)2

≥ 1

d

∑
1≤i≤d

|B(ζid)|2.

Since

|B(ζid)|2 =
∑

0≤k,l≤n

bkζ
ik
d blζ

il
d =

∑
0≤k,l≤n

bkblζ
i(k−l)
d ,

we conclude that (
max
1≤i≤d

|B(ζid)|
)2

≥ 1

d

∑
0≤k,l≤n

bkbl
∑

1≤i≤d

ζ
i(k−l)
d .

The inner-most sum vanishes unless d | k − l. Because n < d this can only occur if k = l, in which case the
inner-most sum equals d. Using this and taking the square-root completes the proof in this case.

Now we note that the same estimate holds true if, D(ξ) = 0 i.e., if, after relabeling, ξi = uζid for some fixed

u on the unit circle. Indeed, B(ξi) = B(uζid) = B̃(ζid) with B̃(x) = b0 + b1ux+ · · ·+ bnu
nxn, and the coefficient

vectors of B and B̃ both have the same `2-norm.
Next we consider the general case. Using the trivial estimate and the previous special case we obtain

max
1≤i≤d

|B(ξi)| ≥ sup
φ

(
max
1≤j≤d

|B(φ(ζjd))| − max
1≤j≤d

min
1≤i≤d

|B(ξi)−B(φ(ζjd))|
)

≥
√ ∑

0≤i≤n

|bi|2 − inf
φ

max
1≤j≤d

min
1≤i≤d

|B(ξi)−B(φ(ζjd))|.

Hence, it suffices to show

inf
φ

max
1≤j≤d

min
1≤i≤d

|B(ξi)−B(φ(ζjd))| ≤ D(ξ)d3/2 max
1≤i≤d

{1, |ξi|}d−2
√ ∑

0≤i≤n

|bi|2.(3.3)
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Let γ denote the (complex) line segment connecting a point ζ ∈ T with an arbitrary point ξ. We use the
parametrisation γ(τ) = (1− τ)ζ + τξ with τ ∈ [0, 1]. By using the complex line integral of B along γ, we write
B(ξ)−B(ζ) =

∫
γ
B′(τ) dτ . Hence,

|B(ξ)−B(ζ)| ≤ |ξ − ζ| max
τ∈[0,1]

|B′(γ(τ))|.(3.4)

Further, as |ζ| ≤ max{1, |ξ|}, we have |γ(τ)| ≤ max{1, |ξ|} for any τ ∈ [0, 1]. By the Cauchy–Schwarz inequality,

|B′(γ(τ))| ≤ n
√ ∑

0≤i<n

|γ(τ)|2i
√ ∑

0≤i<n

|bi|2 ≤ d3/2 max{1, |ξ|}d−2
√ ∑

0≤i≤n

|bi|2.(3.5)

Combining (3.4) and (3.5), with ξ = ξi and ζ = φ(ζjd), while using max{1, |ξi|} ≤ max1≤i≤d{1, |ξi|} the inequality
(3.3) drops out. This proves the lemma. �

Next we derive a corollary. Recall that ‖ · ‖ denotes the maximum norm on Cd.

Corollary 8. Let ξ ∈ Cd \ {0} and suppose that B(x) = b0 + b1x + · · · + bnx
n ∈ C[x] has degree strictly less

than d. We have

max
1≤i≤d

|B(ξi)| ≥
(

1− d3/2D
(
ξ

‖ξ‖

))√ ∑
0≤i≤n

|bi · ‖ξ‖i|2,

If n = 0 then we can omit the first factor.

Proof. Apply Lemma 7 with ξ and B(x) = b0 + b1x+ · · ·+ bnx
n replaced by

ξ
‖ξ‖

and B̃(x) = B(‖ξ‖x). �

Decomposing B(x) =
∑
j∈J bjx

j +
∑
k/∈J bkx

k and applying Lemma 7 or Corollary 8 to
∑
j∈J bjx

j sometimes
allows to produce non-trivial results, even when degB ≥ d. Let us record here only the special case when all ξi
lie on the unit circle.

Corollary 9. Let ξ ∈ Td, and suppose B(x) = b0 + b1x + · · · + bnx
n ∈ C[x]. Then for every I ⊂ {1, 2, . . . , d}

and each non-empty J ⊂ {0, 1, . . . , n} with maxj∈J j −minj∈J j < #I we have

max
1≤i≤d

|B(ξi)| ≥
(
1− (#I)3/2DI

)√∑
j∈J
|bj |2 −

∑
k/∈J

|bk|.

where DI = D((ξi)i∈I).

4. Application to Galois orbits and lower bounds for the house

In this section we apply the results of Section 3 to a diophantine setting. Throughout this section let K be
subfield of Q, ξ ∈ Q\{0}, and d = [K(ξ) : K]. Let us write

Mξ,K = (x− ξ1) · · · (x− ξd) ∈ K[x]

for the monic minimal polynomial of ξ over K with conjugates ξ1, . . . , ξd over K. Recall that

Hom(K) = {σ : K → C; field homomorphism}.
For each σ ∈ Hom(K) let

τ1,σ, . . . , τd,σ ∈ Hom(K(ξ))

be the d extensions of σ from K to K(ξ), and set

τσ(ξ) = (τ1,σ(ξ), . . . , τd,σ(ξ)).

So the components of τσ(ξ) are precisely the d distinct roots of the irreducible polynomial σ(Mξ,K) ∈ σ(K)[x].

Lemma 10. Let O be a subring of OK , and let ξ be a non-zero algebraic integer. Suppose that P (x) =
a0 + a1x+ · · ·+ anx

n ∈ O[x] is of degree 1 ≤ n < d, and let α = P (ξ). Then we have

α ≥ max
σ∈Hom(K)

(
1− d3/2D

(
τσ(ξ)

‖τσ(ξ)‖

))
|σ(an)| ‖τσ(ξ)‖n

Proof. We have

α ≥ max
σ∈Hom(K)

max
τ∈Hom(K(ξ))

τ|K=σ

|τ(P (ξ))| = max
σ∈Hom(K)

max
τ∈Hom(K(ξ))

τ|K=σ

|σ(P )(τ(ξ))| .

Due to Corollary 8, the right hand side is at least

(4.6) max
σ∈Hom(K)

(
1− d3/2D

(
τσ(ξ)

‖τσ(ξ)‖

))  ∑
0≤k≤n

∣∣σ(ak)‖τσ(ξ)‖k
∣∣21/2

.

The second factor is, trivially, at least |σ(an)| ‖τσ(ξ)‖n, which proves the claim. �
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We now introduce a new invariant for the tuple (K, ξ).

Definition 3. Let

η(K, ξ) = min
σ∈Hom(K)

min{‖τσ(ξ)‖, ‖τσ(ξ)‖d−1}
(

1− d3/2D
(
τσ(ξ)

‖τσ(ξ)‖

))
.(4.7)

Remark 2. The quantity η(K, ξ) can also be expressed in terms of the minimal polynomial Mξ,K . For M =
(x− α1) · · · (x− αd) ∈ C[x]\C, not a monomial, define

η0(M) = min{‖α‖, ‖α‖d−1}
(

1− d3/2D
(
α

‖α‖

))
,

where α = (α1, . . . , αd) ∈ Cd \ {0}. We have

η(K, ξ) = min
σ∈Hom(K)

η0(σ(Mξ,K)),

where σ(Mξ,K) is understood to be applied coefficient-wise. This shows that η(K, ξ) = η(L, ξ) whenever Mξ,K =
Mξ,L. In particular, if [K(ξ) : K] = [Q(ξ) : Q] then

η(K, ξ) = η(Q, ξ).(4.8)

Our next result is key to determine the Northcott number of various examples, including those leading to
Theorem 1. Roughly speaking, η(·, ·) will provide a lower bound for the house of “new elements” in extensions
as required to apply the general Lemma 6.

Proposition 11 (Key Proposition). Let O be a subring of OK , let ξ be an algebraic integer but not in OK ,
and suppose that Mξ,K ∈ O[x]. Then we have

δ · (O[ξ]\O) ≥ η(K, ξ).

Proof. Suppose α ∈ O[ξ]\O. Since Mξ,K ∈ O[x] we can choose a polynomial P ∈ O[x] of degree 1 ≤ n < d
such that α = P (ξ) = a0 + a1ξ + · · ·+ anξ

n. From Lemma 10 we conclude that

α ≥ max
σ∈Hom(K)

(
1− d3/2D

(
τσ(ξ)

‖τσ(ξ)‖

))
|σ(an)| ‖τσ(ξ)‖n.

As an 6= 0 is an algebraic integer there exists σ ∈ Hom(K) such that |σ(an)| ≥ 1. Noticing that ‖τσ(ξ)‖n ≥
min{‖τσ(ξ)‖, ‖τσ(ξ)‖d−1} completes the proof. �

For any eligible choices of K the hypothesis ensures that the minimal polynomials of ξ over K, and over the
field of fractions of O are identical. Hence η(K, ξ) is independent of the particular choice of K.

5. Proof of Theorem 2

With Proposition 11 at hand, we can now easily prove Theorem 2. Recall that (ξi)i is a sequence of algebraic
integers, O0 is a ring (containing 1) of algebraic integers,

Oi = O0[ξ1, . . . , ξi], and O =
⋃
i≥1

Oi = O0[ξ1, ξ2, ξ3, . . .].

The field Ki is the field of fractions of Oi, and by hypothesis Mξi,Ki−1 ∈ Oi−1[x]. Moreover, di = [Ki−1(ξi) :
Ki−1] > 1, and thus ξi /∈ OKi−1 . From Proposition 11 we conclude that

δ · (Oi−1[ξi]\Oi−1) ≥ η(Ki−1, ξi).

Applying Lemma 6 with Ai = Oi proves Theorem 2.

6. Applications of the equidistribution method

In this section we discuss a few special cases of Theorem 2. Recall that by Northcott’s Theorem (cf. Lemma
5) one has N· (O) = ∞ for any ring of algebraic integers O, whose field of fractions has finite degree over Q.
We will use this fact without further notice.

Corollary 12. Let (pi)i∈N, and (di)i∈N be two sequences of primes, and suppose the primes di are pairwise

distinct. Let ξi = p
1/di
i be any di-th root, Oi = Z[ξ1, . . . , ξi], Ki be the field of fractions of Oi, and let

O = ∪i≥1Oi. Then η(Ki−1, ξi) = η(Q, ξi) = ξi , and N· (O) = lim infi→∞ ξi .

Proof. Let lim infi→∞ ξi = t ∈ [1,∞]. Since the ξi are pairwise distinct, we get N· (O) ≤ t. We derive, by
Eisenstein’s criterion and the tower-law, that di = [Ki−1(ξi) : Ki−1] = [Q(ξi) : Q]. Hence, Mξi,Ki−1 = Mξi,Q ∈
Oi−1[x], and η(Ki−1, ξi) = η(Q, ξi). As the di conjugates ξi ζ

j
di

of ξi are perfectly equidistributed on the circle

of radius ξi about the origin, we have η(Q, ξi) = ξi . Thus, Theorem 2 implies N· (O) ≥ t. �
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Next we consider a generalisation of Corollary 12. To reduce clutter we define for each non-zero algebraic
number ξ the unordered tuple of normalised conjugates

cξ =

(
ξ1

ξ
, . . . ,

ξd

ξ

)
,

where d = [Q(ξ) : Q] and ξ1, . . . , ξd are the conjugates of ξ. We remind the reader that D(cξ) is well-defined
as the finite discrepancy D(·) is indifferent to the order of the components. Before stating the result let us
informally discuss what we would get by applying Theorem 2 in the most naive way.

Let (γi)i be a sequence of algebraic integers of degree mi, let ξi = γ
1/ni
i be a ni-th root of γi, and suppose

that [Ki−1(ξi) : Ki−1] = mini > 1. Applying Theorem 2 yields

N· (O) ≥ lim inf
i→∞

η(Ki−1, ξi) = lim inf
i→∞

η(Q, ξi) = lim inf
i→∞

ξi

(
1− (mini)

3/2D (cξi)
)
.

If limi→∞(mini)
3/2D (cξi) = 0 then we conclude that N· (O) = lim infi→∞ ξi . In general the best shot at

the former equation we have is Lemma 15 (further below in this section), which ensures the required condition
provided

lim
i→∞

m
3/2
i n

1/2
i D (cγi) = 0.

Hence, we need the normalised conjugates cγi of γi to converge very rapidly to a perfect equidistribution as i
gets large.

However, Theorem 2 allows us to consider the conjugates of γi over Ki−1 and of ξi = γ
1/ni
i over Ki−1(γi)

separately. Now the conjugates of ξi over Ki−1(γi) are perfectly equidistributed and those of γi over Ki−1 are
much easier to control than those of ξi over Q. In this way we can relax the above condition to

m
3/2
i D (cγi) ≤ 1− γi

1/ni−1

for all sufficiently large i. Here is the precise result.

Corollary 13. Let (γi)i be a sequence of algebraic integers of respective degree mi with conjugates γ
(i)
1 , . . . , γ

(i)
mi ,

and with smallest (complex) absolute value si = min1≤j≤mi |γ
(i)
j |. Let (ni)i be a sequence of integers > 1, and

choose a ni-th root γ
1/ni
i for each i ∈ N. Suppose that the following four properties hold

• [Q(γ
1/n1

1 , . . . , γ
1/ni
i ) : Q] = m1n1 · · ·mini for each i ∈ N.

• D(cγi) ≤ m
−3/2
i (1− γi

1/ni−1) for all but finitely many i.
• si ≥ 1 for all but finitely many i.

• lim
i→∞

(
si
γi

)1/ni

= 1.

With O = Z[γ
1/ni
i ; i ∈ N], we have

N· (O) = lim inf
i→∞

γi
1/ni .

Proof. Let i0 ≥ 1 be an index such that the second and third condition is satisfied for all i ≥ i0, and set

O0 = Z[γ
1/ni
i ; i ≤ i0]. For i ∈ N set ξ2i−1 = γi+i0 and ξ2i = γ

1/ni+i0
i+i0

. Since ni+i0 > 1 the ξ2i are pairwise

distinct. Thus N· (O) ≤ lim infi→∞ ξ2i .
To prove the reversed inequality we let Oi = O0[ξ1, . . . , ξi], and we write Ki for the field of fractions of Oi.

The first condition implies that the minimal polynomial Mξ2i−1,K2i−2
has coefficients in Z, and that

Mξ2i,K2i−1
= xni+i0 − γi+i0 = xni+i0 − ξ2i−1.

Hence, Mξi,Ki−1 ∈ Oi−1[x] for all i ∈ N, and ξ2i /∈ OK2i−1 as ni+i0 > 1. Moreover, if ξ2i−1 ∈ OK2i−2 then
mi+i0 = 1 and thus ξ2i−1 ∈ Z ⊂ O0. Hence, we can assume without loss of generality that ξi is not in OKi−1 .

Thus we can apply Theorem 2, and it suffices to check that lim infi→∞ η(Ki−1, ξi) ≥ lim infi→∞ ξ2i . Note that
the first condition implies [K2i−2(ξ2i−1) : K2i−2] = [Q(ξ2i−1) : Q]. Hence,

η(K2i−2, ξ2i−1) = η(Q, ξ2i−1) = γi+i0
(
1−m3/2

i+i0
D
(
cγi+i0

) )
≥ γ

1/ni+i0
i+i0

= ξ2i ,

using the second hypothesis.

Finally, note that by the first hypothesis each σ ∈ Hom(K2i−1) maps γi+i0 to a conjugate γ
(i+i0)
k , and thus

the ni+i0 extensions τj,σ of σ map ξ2i to the ni+i0 perfectly equidistributed complex numbers γ
(i+i0)
k

1/ni+i0
ζlni+i0

with 1 ≤ l ≤ ni+i0 . Therefore, using the third condition, we have for all i ∈ N that

η(K2i−1, ξ2i) = min
{
si+i0 , s

ni+i0−1
i+i0

}1/ni+i0
= s

1/ni+i0
i+i0

=

(
si+i0
γi+i0

)1/ni+i0

γi+i0
1/ni+i0 =

(
si+i0
γi+i0

)1/ni+i0

ξ2i ,

and thus by the fourth hypothesis lim infi→∞ η(K2i−1, ξ2i) ≥ lim infi→∞ ξ2i .
�



10 FABIEN PAZUKI, NICLAS TECHNAU AND MARTIN WIDMER

Next, note that Theorem 2 requires that all Oi have the Northcott property (with respect to the · ) but
nonetheless O0 may be an infinite ring extension of Z. J. Robinson has shown that the ring of integers of the
composite field of all real quadratic number fields has the Northcott property. Various other examples have
been established in [3, 6, 7, 30]. Theorem 2 allows to extend the Northott property of these rings O0 to certain
bigger rings, or alternatively, to create ring extensions of these O0 with prescribed finite Northcott number.

Corollary 14. Let O0 be a ring of algebraic integers, and let (ξi)i be pairwise distinct algebraic integers.
Let Oi = O0[ξ1, . . . , ξi], let Ki be the field of fractions of Oi, set O = O0[ξ1, ξ2, ξ3, . . .], and suppose that
[Ki−1(ξi) : Ki−1] = [Q(ξi) : Q] = di > 1. If N· (OK0) =∞, then

lim inf
i→∞

ξi ≥ N· (O) ≥ lim inf
i→∞

ξi

(
1− d3/2i D (cξi)

)
.

In particular, if ni are rational integers, and the elements ξi = n
1/di
i have degree di > 1 over Ki−1, then

N· (O) = lim infi→∞ |n1/dii |.

Proof. First note that by Lemma 5 (cf. Remark 1) we conclude N· (OKi) = ∞, and thus N· (Oi) = ∞. Now
note that

η(Ki−1, ξi) = η(Q, ξi) = ξi

(
1− d3/2i D (cξi)

)
,

and Mξi,Ki−1
= Mξi,Q. Hence, the claim follows from Theorem 2. �

We end this section with some simple estimates for the finite discrepancy, one of which (Lemma 15) has
already been used in the paragraph after the proof of Corollary 12 to motivate Corollary 13. We believe they
might also be useful for further applications of Theorem 2. We first introduce a slight refinement of the finite
discrepancy. For ξ ∈ Cd and u ∈ T we set

Du(ξ) = max
1≤j≤d

min
1≤i≤d

|ξi − uζjd|,

so that

D(ξ) = inf
u∈T

Du(ξ).(6.9)

For fixed ξ ∈ Cd the function Du(ξ) is continuous in u. Since T is compact if follows that there exists u ∈ T
such that

D(ξ) = Du(ξ).(6.10)

Lemma 15. Let n,m ∈ N. Let α = (α1, . . . , αm) ∈ Cm, and suppose that D (α) ≤ 1/2. Then we have

D

((
(αk)

1/n
ζ`n

)
1≤k≤m
1≤`≤n

)
≤ 2

n
D (α) .

Note that the left hand-side is independent of the particular choice of the n-th root.

Proof. By (6.10) we can choose u ∈ T such that Du (α) = D (α). By (6.9) it suffices to prove that

(6.11) Du1/n

((
(αk)

1/n
ζ`n

)
1≤k≤m
1≤`≤n

)
≤ 2

n
Du (α) .

After reordering the coordinates of α, there exists for each 1 ≤ k ≤ m a real number δ satisfying 0 ≤ δ ≤
Du(α) ≤ 1

2 , and a real number ϕ such that

αk = ζkmu+ δeiϕ.

Thus we obtain

αk
1/n = (ζkmu+ δeiϕ)1/n = ζk+smmn u1/n (1 + δeiϕ

′
)1/n,

for some integer 1 ≤ s ≤ n and some real number ϕ′. The generalised binomial theorem implies for any complex
number z, with |z| < 1, the Taylor expansion

(1 + z)1/n = 1 +
∑
r≥1

(
1/n
r

)
zr where

(
1/n
r

)
=

1
n

(
1
n − 1

)
. . .
(
1
n − (r − 1)

)
r!

for r ≥ 1.

Further, ∣∣∣∣(1/n
r

)∣∣∣∣ =
1
n

1

(
1− 1

n

)
2

. . .
(r − 1)− 1

n

r
≤ 1

n
(r ≥ 1).

Consequently, ∣∣∣(1 + δeiϕ
′
)1/n − 1

∣∣∣ ≤ 1

n

∑
r≥1

δr =
1

n

δ

(1− δ)
≤ 2δ

n
.
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Finally, note that for any fixed 1 ≤ s ≤ n, the expression ζk+smmn u1/nζ`n = ζ
k+(`+s)m
mn u1/n, for 1 ≤ k ≤ m and

1 ≤ ` ≤ n ranges over all elements ζrnmu
1/n for 1 ≤ r ≤ mn. This leads to (6.11), hence gives the result.

�

Lemma 16. Let n,m ∈ N be coprime, let α = (α1, . . . , αm) ∈ Cm, β = (β1, . . . , βn) ∈ Cn. Then we have

D
(

(αkβl) 1≤k≤m
1≤l≤n

)
≤ (1 +D(α))(1 +D(β))− 1.

Proof. By (6.10) we can choose u, u′ ∈ T such that Du (α) = D (α) and Du′ (β) = D (β). By (6.9) it suffices
to prove that

(6.12) Duu′((αkβ`) 1≤k≤m
1≤`≤n

) ≤ (1 +Du(α))(1 +Du′(β))− 1.

After reordering the coordinates of α and β we can write αk = ζkmu+ δke
iϕk and β` = ζ`nu

′ + δ′`e
iϕ′` for certain

non-negative real δk, δ
′
` and ϕk, ϕ

′
` satisfying 0 ≤ δk ≤ Du(α), 0 ≤ δ′` ≤ Du′(β).

Further

(ζkmu+ δke
iϕk)(ζ`nu

′ + δ′`e
iϕ′`) = ζkn+`mmn uu′ + εk,`

where |εk,`| ≤ δk + δ′` + δkδ
′
` ≤ (1 +Du(α))(1 +Du′(β))− 1. By coprimality of m and n, the exponent kn+ `m

represents all residue classes modulo mn as 1 ≤ k ≤ m and 1 ≤ ` ≤ n. This proves (6.12), and hence the
lemma. �

7. From arbitrary rings of algebraic integers to integrally closed subrings

In this section we record two classical results that provide a strategy to show that a ring of algebraic numbers
is integrally closed, i.e., is the ring of integers of a field.

In the first step we need to identify when a given algebraic integer θ of K generates the ring of integers OK
over Z. There are at least three such criteria in the literature - Dedekind’s, Uchida’s and Lüneburg’s criterion
(cf. [26]). For our purpose Dedekind’s classical criterion is well suited (cf. [14, Theorem 1.1]).

Lemma 17 (Dedekind’s criterion). Let θ be an algebraic integer, and let Mθ,Q be its minimal polynomial over Q.

Let K = Q(θ), and let q be a rational prime. Let Mθ,Q be the reduction of Mθ,Q modulo q and Mθ,Q = ϕe11 . . . ϕekk
be the decomposition of Mθ,Q into irreducible factors over the ring of polynomials Fq[x] over the field with q
elements. Let µi, g ∈ Z[x] be such that

Mθ,Q = µe11 . . . µekk + qg

and µi = ϕi for all i ≤ k. The following are equivalent:

(1) The prime q does not divide [OK : Z[θ]].
(2) For all i ≤ k, either ei = 1, or ϕi - g in Fq[x].

Next we require a criterion to factor the ring of integers of a compositum into a product of rings of integers. If
O is an order of a number field K then we write ∆O for the discriminant of that order, and just ∆K if O = OK
is the maximal order. For subfields K and F of Q we write KF for their composite field. The next statement
can be found in [9, Proposition III.2.13].

Lemma 18. If F,K are number fields and linearly disjoint over Q, with (∆F ,∆K) = 1, then OKF = OK · OF
where the right hand side denotes the smallest subring of OQ containing OK and OF .

We will apply these general criteria to rings of the form Z[p
1/d1
1 , p

1/d2
2 , p

1/d3
3 , . . .], where di and pi are suitably

chosen primes. To this end we first need to compute the modulus of the discriminant ∆Z[p1/dii ]
.

Lemma 19. Let n ∈ N, suppose xd − n ∈ Z[x] is irreducible, and let θ ∈ Q be one of its roots. We have∣∣∆Z[θ]
∣∣ = ddnd−1.

Proof. Note that the minimal polynomial Mθ,Q of θ is given by
∏
i≤d
(
x− ζidθ

)
. Thus

∣∣∆Z[θ]
∣∣ =

∣∣∣∣∣∣∣∣
∏

1≤i,j≤d
i 6=j

(ζjdθ − ζ
i
dθ)

∣∣∣∣∣∣∣∣ = |θd(d−1)|

∣∣∣∣∣∣∣∣
∏

1≤i,j≤d
i 6=j

(1− ζi−jd )

∣∣∣∣∣∣∣∣ .(7.13)

Using the basic identity ∏
i<d

(
x− ζid

)
=
xd − 1

x− 1
=

d−1∑
k=0

xk,
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and that for any fixed i ≤ d the relation {ζi−jd ; j ≤ d, j 6= i} = {ζjd; j ≤ d− 1} holds, we see that

∏
1≤i,j≤d
i6=j

(1− ζi−jd ) =

(∏
i<d

(
1− ζid

))d
= dd.

The latter in conjunction with (7.13) shows that
∣∣∆Z[θ]

∣∣ = nd−1dd. �

Next, we apply Dedekind’s criterion in our setting. It shows that if p and d are distinct primes and the

Fermat quotient pd−1−1
d is not divisible by d then the field Q(p1/d) is monogenic.

Lemma 20. Let p and d be odd primes. Put θ = p1/d and K = Q(θ). If d2 - pd − p then OK = Z[θ].

Proof. It is well-known that ∆Z[θ] = ∆K [OK : Z[θ]]2. Hence, in order to rule out that [OK : Z[θ]] > 1, it suffices

by Lemma 19 to check that p, d - [OK : Z[θ]] as xd − p is irreducible in Z[x] by Eisenstein’s criterion. We use
Lemma 17 and its notation, with Mθ,Q as above. Next we study the two critical cases q = p and q = d separately.

Case q = p: Then Mθ,Q = xd = ϕd with µ = x, and g = −1. So ϕ - g.

Case q = d: Then Mθ,Q = xd − p = (x− p)d = ϕd with µ = x− p, and

g =
xd − p− (x− p)d

d
=
pd − p
d
−
d−1∑
i=1

(
d
i

)
d

xd−i(−p)i.

So ϕ | g if and only if g(p) = 0. Now g(p) = pd−p
d − 0 = pd−p

d 6= 0. �

Next we want to show that for given T > 1 and each prime di sufficiently large, there exists a prime pi such

that the sequence p
1/di
i converges to T in a prescribed way (i.e. from above or from below). But we also want

the fields Q(p
1/di
i ) to be monogenic, and so we need that the Fermat quotients

p
di−1

i −1
di

are not divisible by di.

We use the observation (d−1)d−1−1
d ≡ 1 (mod d), for any odd prime d, which follows from a straightforward

computation (see the proof of the next lemma). Thus, to achieve the required monogenicity it suffices to have

pi ≡ di − 1 (mod d2i ).(7.14)

Lemma 21. Let d be an odd prime. We have (d−1)d−1−1
d ≡ 1 (mod d).

Proof. First, note that

(d− 1)d−1 =
∑

0≤j≤d−1

(
d− 1

j

)
dj(−1)d−1−j = (−1)d−1 + (d− 1)d(−1)d−2 + d

∑
2≤j≤d−1

(
d− 1

j

)
dj−1(−1)d−1−j .

Because d is odd, the first two terms simplify to 1− d(d− 1). Hence,

(d− 1)d−1 − 1

d
= 1 + d

(
− 1 +

∑
2≤j≤d−1

(
d− 1

j

)
dj−2(−1)d−1−j

)
which implies the claim. �

A straightforward application of the Siegel–Walfisz Theorem, see [12, Cor. 5.29], guarantees the existence of
the required primes pi in the right interval, and the prescribed residue class.

Lemma 22. Fix T > 1. If d is a sufficiently large prime in terms of T , then there exist a prime p in the
interval (T d, 2T d) and one prime p in the interval (T d/2, T d) such that in both cases p ≡ d− 1 (mod d2).

Proof. Let π(x; q, a) denote the number of primes p ≤ x that solve the congruence p ≡ a (mod q). Let ϕ denote
Euler’s totient function, and let

Li(x) =

∫ x

2

dτ

log τ
.

The Siegel–Walfisz theorem states for any N > 1 and q ≥ 1 we have

π(x; q, a) =
Li(x)

ϕ(q)
+ON (x(log x)−N )

uniformly for all 1 ≤ a ≤ q with (a, q) = 1 for any x ≥ 2. We will only check that

π(2T d; d2, d− 1)− π(T d; d2, d− 1) ≥ 2.
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Here the 2 ensures that we have an element in the open interval (T d, 2T d). The case π(T d; d2, d − 1) −
π(T d/2; d2, d− 1) ≥ 2 is shown similarly. Thus, specialising x = T d and N = 4, we infer that

π(2x; d2, d− 1)− π(x; d2, d− 1) =
Li(2x)

ϕ(d2)
− Li(x)

ϕ(d2)
+O

(
x

(log x)4

)
=

1

ϕ(d2)

∫ 2x

x

dτ

log τ
+O

(
x

(log x)4

)
.

Because d = (log x)/ log T , we have

1

ϕ(d2)

∫ 2x

x

dτ

log τ
>

1(
log x
log T

)2 x

log(2x)
> (log T )2

x

(1 + log x)3
.

Since d is large (and hence x as well), this implies π(2x; d2, d− 1)− π(x; d2, d− 1) ≥ 2. �

We can now deduce:

Lemma 23. Let (pi, di)i be a sequence where both components are prime, min{pi+1, di+1} > max{pi, di} for

all i, and such that OQ(ξi) = Z[ξi] with ξi = p
1/di
i . Then with K = ∪i≥1Q(ξ1, . . . , ξi) and Oi = Z[ξ1, . . . , ξi] we

have OK =
⋃
i≥1

Oi.

Proof. Set Ki = Q(ξ1, . . . , ξi). The only primes that ramify in Ki−1 are p1, d1, . . . , pi−1, di−1. Hence we have
(∆Ki−1

,∆Q(ξi)) = 1. Moreover, Ki−1 and Q(ξi) are linearly disjoint over Q since their degrees d1 · · · di−1
and di are coprime. We conclude from Lemma 18 that OKi = OKi−1

· Z[ξi], and hence by induction OKi =
Z[ξ1, . . . , ξi] = Oi. This proves that OK = ∪i≥1Oi. �

8. Proof of Theorem 1

We use the specific construction given in Corollary 12 with additional constraints on the primes pi and di as
required to ensure the specific properties.

(a): Let (di)i be a sequence of strictly increasing primes. Combining Lemma 20, the congruence condition
(7.14), and Lemma 22, we see that for each i large enough there exists a prime pi ∈ (tdi/2, tdi) such that

OQ(p
1/di
i )

= Z[p
1/di
i ]. We select a subsequence of (pi, di)i to ensure min{pi+1, di+1} > max{pi, di} for all i.

Set ξi = p
1/di
i , Oi = Z[ξ1, . . . , ξi], and O = ∪iOi. The ξi are pairwise distinct, and 2−1/dit < ξi < t. Thus

#{α ∈ O; α < t} = ∞, and it follows from Corollary 12 that N· (O) = t. Finally, by Lemma 23 we see that
OK = O. This proves the existence of a field K with N· (OK) = t and satisfying (a).

(b): To construct a field K with N· (OK) = t and (b) we proceed in the same manner but choose the primes
pi ∈ (tdi , 2tdi), so that by Corollary 12 η(Ki−1, ξi) = ξi ∈ (t, 21/dit). It follows from Proposition 11 that
#{α ∈ OK ; α ≤ t} <∞.

Now suppose ε > 0 and M − t < (t − 1)/2, and suppose α ∈ O with t + ε < α < M . Clearly, there are
only finitely many such α in O0, so we can assume α /∈ O0. Thus α ∈ Oi\Oi−1 for some i ∈ N. Note that
di = [Q(ξi) : Q]. Hence, there exists P =

∑
k akx

k ∈ Oi−1[x] of degree 1 ≤ n < di such that α = P (ξi). Since
Mξi,Ki−1

(x) = Mξi,Q(x) = xdi − pi ∈ Q[x] it follows that the di distinct roots of σ(Mξi,Ki−1
)(x) are perfectly

equidistributed on the circle |z| = ξi = p
1/di
i , and therefore D

(
τ σ(ξi)
‖τ σ(ξi)‖

)
= 0 for all σ ∈ Hom(Ki−1). By

Lemma 10 we conclude that α ≥ ξi
n
> tn, and thus tn < t+ (t− 1)/2. This forces n < 2 and thus n = 1. So

α = a1ξi + a0. Again, by Lemma 10 we get that α ≥ |σ(a1)| ξi for all σ ∈ Hom(Ki−1), and thus α ≥ a1 · ξi .
It follows that M > α > a1 · ξi > a1 · t, and thus a1 < M/t < 1 + (t − 1)/(2t) < 1 + (t − 1)/2 < t. Hence
there are only finitely many possibilities for a1 ∈ O, in particular, there is an element with smallest house > 1.
We can assume that M/t is below the smallest house value > 1 for such elements a1. This forces a1 = 1, which
in turn implies that all archimedian absolute values are equal to 1 since a1 is integral.

Next note that the sectors bounded by the di rays starting at 0 and joining the conjugates ξi ζ
j
di

partition the

complex plane. Consider the sector that contains σ(a0) where σ ∈ Hom(Ki−1) is such that a0 = |σ(a0)|. Due
to the coprimality of the degrees di there exists an extension τ ∈ Hom(Ki) of σ that sends a1ξi to a conjugate
that lies in the same sector as σ(a0). It follows that α ≥ |τ(a1ξi + a0)| ≥ |τ(a1ξi)|+ | cos(2π/di)σ(a0)|. We can
assume that di > 6 and thus cos(2π/di) ≥ 1/2. Hence we conclude M > α ≥ ξi + a0 /2. Moreover, we can
assume that M < t+ 1/2. As ξi > t and a0 is integral we conclude that a0 = 0. Thus t+ ε < α = ξi ≤ 21/dit,
and thus i is bounded in terms of ε. Hence, there are only finitely many choices of α, and this proves part (b).

(c): And finally, to construct a field K with the third property we take a sequence (Ti)i of real numbers

that converges to t from above. For each Ti we construct a sequence (pij , dij)j with pij ∈ (T
dij
i , 2T

dij
i ) and

O
Q(p

1/dij
ij )

= Z[p
1/dij
ij ]. A slightly modified Cantor diagonalisation argument allows us to construct a sequence
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(pm, dm)m that contains infinitely many elements from each sequence (pij , dij)j , and satisfies min{pm+1, dm+1} >
max{pm, dm} for all m. With ξm = p

1/dm
m we conclude from Lemma 23 that OK = O = Z[ξm;m ∈ N]. Now

by Corollary 12 we get N· (OK) = t, and by Proposition 11 we see that α > t for all α ∈ OK\Z. And, finally,
since each Ti is a limit point of ( ξm )m we see that #{α ∈ OK ; t+ ε ≤ α < M} =∞ for all M > t and all ε > 0
sufficiently small. This finishes the proof of Theorem 1.

9. Proofs of Theorem 3 and Theorem 4

Theorem 3 and Theorem 4 both use Lemma 6 applied to a common setting, with the sets Ai defined as

follows. Let (pi)i and (di)i be sequences of prime numbers. Let p
1/di
i be any choice of a di-th root of pi. We

set Ai = Ki where K0 = Q and Ki+1 = Ki(p
1/di
i ), and we write K = ∪iKi.

Lemma 24. Let γ ≥ 0, and recall that hγ(α) = (degα)γh(α). Then Nhγ (Ki) =∞ for all i ∈ N0. Moreover, if
pi /∈ {d1, p1, . . . , di−1, pi−1} then

δhγ (Ki\Ki−1) ≥ dγi
(

log pi
2di

− log di
2(di − 1)

)
.

Proof. First note that Nhγ (Ki) = ∞ by Northcott’s Theorem. Next let us prove the inequality. Since only

primes in {d1, p1, . . . , di−1, pi−1} can ramify in Ki−1 we conclude that pi is unramified in Ki−1, and hence xdi−pi
is an Eisenstein polynomial in OKi−1

[x]. Thus, [Ki : Ki−1] = di is prime, and we conclude that Ki−1(α) = Ki

for any α ∈ Ki\Ki−1. An inequality of Silverman [24, Theorem 2] (see also [30, (5)]) implies that

h(α) ≥
log(NKi−1/Q(DKi/Ki−1

))

2[Ki−1 : Q]di(di − 1)
− log di

2(di − 1)
,

where NKi−1/Q(·) denotes the norm and DKi/Ki−1
denotes the relative discriminant. A straightforward calcu-

lation shows (see [30, Proof of Theorem 4]) that p
[Ki−1:Q](di−1)
i divides NKi−1/Q(DKi/Ki−1

). Hence,

h(α) ≥ log pi
2di

− log di
2(di − 1)

.

Finally, we note that deg(α) ≥ [Ki−1(α) : Ki−1] = di, and hence

δhγ (Ki\Ki−1) ≥ dγi
(

log pi
2di

− log di
2(di − 1)

)
.

�

We are now ready for the proof of Theorem 3:

Proof of Theorem 3:
Let (pi)i and (di)i be sequences of primes and the pi strictly increasing such that log(pi)/di converges to 2t.

It follows that pi /∈ {d1, p1, . . . , di−1, pi−1} for all sufficiently large i. Set K0 = Q and Ki = Ki−1(p
1/di
i ) as

at the beginning of this section. Applying Lemma 24 with γ = 0 we conclude that lim inf δh(Ki\Ki−1) ≥ t,

and hence by Lemma 6 we get Nh(K) ≥ t. For the remaining inequality we note that p
1/di
i are all integral

(and all distinct for sufficiently large i) with height log(pi)/di converging to 2t, and thus we immediately get
Nh(K) ≤ Nh(OK) ≤ 2t. �

For the proof of Theorem 4 we need the following two lemmas.

Lemma 25. Let 0 ≤ γ ≤ 1, and let (pi)i and (di)i be sequences of prime numbers such that di
γ−1(log pi −

log di)→∞ as i→∞, and pi /∈ {d1, p1, . . . , di−1, pi−1} for all i > i0. Then L = Q(p
1/di
i ; i ∈ N) is γ-Northcott.

Proof. Since

dγi

(
log pi
2di

− log di
2(di − 1)

)
=

1

2

(
log pi − log di

d1−γi

− log di

d2−γi (1− 1/di)

)
≥ 1

2

(
log pi − log di

d1−γi

− 1

)
,

it follows from Lemma 24 that for i > i0 we have

δhγ (Ki\Ki−1) ≥ 1

2

(
log pi − log di

d1−γi

− 1

)
→∞.

Hence, the claim follows from Lemma 6. �

Lemma 26. Let 0 ≤ γ ≤ 1, ε > 0, and let (pi)i and (di)i be sequences of prime numbers such that di
γ−1(log pi−

log di) → ∞ and di
γ−ε−1 log pi → 0 as i → ∞, and pi /∈ {d1, p1, . . . , di−1, pi−1} for all i > i0. Then L =

Q(p
1/di
i ; i ∈ N) is γ-Northcott but not (γ − ε)-Bogomolov.
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Proof. Since hγ−ε(p
1/di
i ) = (deg p

1/di
i )γ−εh(p

1/di
i ) = di

γ−ε−1 log pi → 0 the claim follows immediately from
Lemma 25. �

Proof of Theorem 4:
Theorem 4 now follows easily from Lemma 26 as all sequences of primes (di)i with di+1 ≥ 2di, and (pi)i with

ed
1−γ+ε/2
i ≤ pi ≤ 2ed

1−γ+ε/2
i satisfy the required conditions of Lemma 26. �
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