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Abstract. Let k be a number field, let θ be a nonzero algebraic number,
and let H(·) be the Weil height on the algebraic numbers. In response to a

question by T. Loher and D. W. Masser, we prove an asymptotic formula for

the number of α ∈ k with H(αθ) ≤ X, and we analyze the leading constant in
our asymptotic formula. In particular, we prove a sharp upper bound in terms

of the classical Schanuel constant.

We also prove an asymptotic counting result for a new class of height func-
tions defined via extension fields of k with a fairly explicit error term. This

provides a conceptual framework for Loher and Masser’s problem and gener-

alizations thereof.
Finally, we establish asymptotic counting results for varying θ, namely, for

the number of
√
pα of bounded height, where α ∈ k and p is any rational prime

inert in k.
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1. Introduction

Let k be a number field. A well-known result due to Schanuel [Sch79] shows that
the subset of kn of points with absolute multiplicative Weil height no larger than
X has cardinality

Sk(n)Xd(n+1) +O(Xd(n+1)−1 logX),
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as X tends to infinity. Here d is the degree of k and the positive constant Sk(n)
involves all the classical number field invariants; for the definition see (1.2).

In the present article we generalize this result in various respects motivated by
a question of Loher and Masser. Let θ be a nonzero algebraic number, let H(·)
denote the absolute multiplicative Weil height on the algebraic numbers Q, and
write N(θk,X) for the number of α ∈ k with H(θα) ≤ X.

Evertse was the first one to consider the quantity N(θk,X). The proof of his
celebrated uniform upper bounds [Eve84] for the number of solutions of S-unit
equations over k involves the following uniform upper bound

N(θk,X) ≤ 5 · 2dX3d + 1.

Later Schmidt [Sch91, Lemma 8B, p. 29] refined Evertse’s argument to get the
correct exponent on X. Schmidt used a different height but elementary inequalities
between them imply

N(θk,X) ≤ 36 · 23dX2d.

But the constant is fairly large. Indeed, the constant’s exponential dependence on
d can be removed, as shown by Loher and Masser. More precisely, they proved

N(θk,X) ≤ 68(d log d)X2d,(1.1)

provided d > 1, and N(θQ, X) ≤ 17X2. (In the special case θ ∈ k a similar
result was obtained earlier by Loher in his Ph.D. thesis [Loh01].) By counting
roots of unity they also showed that an upper bound with a constant of the form
o(d log log d) cannot hold, and hence regarding the degree their result is nearly
optimal. Loher and Masser’s result (1.1) played also an important role in the
recent proof of a longstanding conjecture of Erdős on the largest prime divisor of
2n−1 by Stewart [Ste13]. Stewart’s strategy builds up on work of Yu [Yu07], [Yu13]
on p-adic logarithm forms in which Yu applies a consequence of (1.1) to obtain a
significant improvement. It is this improvement that makes Stewart’s approach
work (c.f. [Yu13, p. 378]).

All the proofs of these upper bounds for N(θk,X) rely in an essential way on
the box-principle, which works well for upper bounds but seems inappropriate to
produce asymptotic results. This may have motivated Loher and Masser’s following
statement [LM04, p. 279] regarding their bound on N(θk,X):“It would be inter-
esting to know if there are asymptotic formulae like Schanuel’s for the cardinalities
here, at least for fixed θ not in k.”

Our Theorem 1 responds to this problem for fixed θ not in k, and our Theorem
4 generalizes Theorem 1 to arbitrary dimensions. Theorem 2 gives a sharp upper
bound for the leading constant in these asymptotics in terms of Schanuel’s constant
Sk(n). In Theorem 3, we shall see asymptotic results for varying θ not in k.

To provide a more general framework for Loher and Masser’s, and similar ques-
tions, we introduce a new class of heights on Pn(k), using finite extensions of the
base field k. As usual, these heights decompose into local factors, one for each place
v of k. However, at a finite number of non-Archimedean places, the local factors
of these heights do not necessarily arise from norms, and moreover, their values do
not necessarily lie in the value groups of the corresponding places v. Theorem 5 (in
Section 6), from which we will deduce Theorem 4 (and thus also Theorem 1), is a
counting result, in the style of Schanuel’s, for these heights.

Our heights are special cases of the heights used by Peyre [Pey95, Définition
1.2]. Peyre gives asymptotic counting results [Pey95, Corollaire 6.2.18] but no
error estimates for his general heights. Therefore the main terms in our Theorem 4
and Theorem 5 could likely be derived from Peyre’s result, although with a different
representation of the constant. Indeed, a significant part of this work consists of
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finding the right representation which enables us to prove the sharp upper bound in
Theorem 2, as well as some invariance properties. Furthermore, Peyre’s approach
does not seem to provide comparable error terms, and the latter are essential for
the proof of our Theorem 3. A very recent result due to Ange [Ang, Théorème 1.1]
provides a Schanuel type counting result for another special case of Peyre’s heights.
Ange also gives a completely explicit and fairly sharp error term. However, his
heights require Euclidean/Hermitian norms at the Archimedean places and thus do
not include the usual Weil height.

Next we introduce some notation. We start with Schanuel’s constant Sk(n),
which is defined as follows

Sk(n) =
hkRk

wkζk(n+ 1)

(
2r(2π)s√
|∆k|

)n+1

(n+ 1)r+s−1.(1.2)

Here hk is the class number, Rk the regulator, wk the number of roots of unity in
k, ζk the Dedekind zeta-function of k, ∆k the discriminant, r = rk is the number
of real embeddings of k and s = sk is the number of pairs of complex conjugate
embeddings of k.

For each place v of k (or w of K := k(θ)) we choose the unique absolute value
| · |v on k (or | · |w on K) that extends either the usual Euclidean absolute value on
Q or a usual p-adic absolute value. We also fix a completion kv of k at v and for
each Archimedean place v of k we define a set of points (z0, . . . , zn) ∈ kn+1

v by∏
w|v

max{|z0|v, |θ|w|z1|v, . . . , |θ|w|zn|v}
[Kw :kv ]

[K:k] < 1,

where the product runs over all places w of K = k(θ) extending v. As these sets
are open, bounded, and not empty, they are measurable and have a finite, positive
volume, which we denote by Vv. Here we identify kv with R or with C, and we
identify the latter with R2. We define

V = V (θ, k, n) := (2rπs)−(n+1)
∏
v|∞

Vv.(1.3)

Write Ok for the ring of integers of k and let µk be the Möbius function for
nonzero ideals of Ok. For ideals A, B of Ok, we write (A,B) := A+B. Moreover,
NkA denotes the absolute norm of the fractional ideal A of k. For α ∈ k, we also
write Nk(α) := Nk(αOk). Analogous notation is used for K instead of k.

For an ideal B of Ok, we write uB := BOK for the extension of B to OK (“up”).
Similarly, for an ideal D of OK , we write dD := D∩Ok for the contraction of D to
Ok (“down”).

The dependence on θ comes in two flavors; while V amounts only to the Archimedean
part the following constant captures both parts.

Let α be nonzero and in Ok such that αθ ∈ OK , let D := αθOK , and D := dD.
We define

gk(θ, n) :=
V

Nk(α)n

∑
B|D

NK(D, uB)
n+1
[K:k]

NkB

∑
A|B−1D

µk(A)

NkA

∏
P |AB

NkP
n+1 −NkP

NkPn+1 − 1
.

(1.4)

In the product, P runs over all prime ideals of Ok dividing AB. It will follow
from Lemma 2.3 that this definition does not depend on the choice of α, and from
Proposition 2.2 that gk(θ, n) > 0.
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Theorem 1. Let θ be a nonzero algebraic number, let k be a number field and
denote its degree by d. Then, as X ≥ 1 tends to infinity, we have

N(θk,X) = gk(θ, 1)Sk(1)X2d +O(X2d−1L),

where L := log(X + 1) if d = 1 and L := 1 otherwise. The implicit constant in the
O-term depends on θ and on k.

Let us briefly discuss some properties of the constant gk(θ, 1) and then illustrate
the theorem by some examples.

For any nonzero α in k we have θk = αθk. Also, the height is invariant under
multiplication by a root of unity. Therefore N(θk,X) = N(ζαθk,X) for any α ∈ k∗
and any root of unity ζ, in particular we have

gk(θ, 1) = gk(ζαθ, 1).(1.5)

This can also be proved directly from the definition as we shall see in Section 2.
By Schanuel’s Theorem we conclude that gk(ζα, 1) = 1. But, as is straightforward
to check, the theorem implies even gk(ζα, 1) = 1 for ζ a root of any unit in Ok and
α ∈ k∗.

The fact that H(αθ) = H(α−1θ−1) implies

gk(θ, 1) = gk(θ−1, 1).

Next we consider the problem of uniformly bounding gk(θ, 1). From Schanuel’s the-
orem and the standard inequalities H(α)/H(θ) ≤ H(θα) ≤ H(θ)H(α) we conclude

H(θ)−2d ≤ gk(θ, 1) ≤ H(θ)2d.

This raises the question of the existence of bounds that are uniform in θ or in d,
or even uniform in both quantities θ and d. From (1.1) we obtain an upper bound
that is uniform in θ, i.e., for d > 1

gk(θ, 1) ≤ 68d log d

Sk(1)
.

Now if we fix d > 1 and vary the fields k then by the Siegel-Brauer Theorem the
right hand-side tends to infinity, so this bound really depends on ∆k and not only on
d. However, intuitively one might guess that for most α ∈ k one has H(θα) ≥ H(α),
so one might even expect that gk(θ, 1) ≤ 1 holds true, which, of course, would be
best-possible. We shall answer here all of these questions. We start with the upper
bound and confirm the intuitive guess.

Theorem 2. Let θ be a nonzero algebraic number. Then gk(θ, n) ≤ 1. Moreover,
equality holds if and only if for every place v of k there is an αv ∈ kv such that
|θ|w = |αv|v holds for all places w of K above v.

Let us now illustrate Theorem 1 with an example, and thereby explain also the
situation regarding lower bounds for gk(θ, 1). Let us first take k = Q, and θ =

√
p

for a prime number p. Then we get the asymptotics

2
√
p

p+ 1
SQ(1)X2 =

24
√
p

π2(p+ 1)
X2.

More generally, if p is inert in k and θ =
√
p then we get the asymptotics

2pd/2

pd + 1
Sk(1)X2d.(1.6)

Letting p tend to infinity shows that there is no lower bound for gk(θ, 1) that is
uniform in θ. Likewise, fixing a p and taking a sequence Q, k1, k2, . . . of number
fields with p inert in ki and [ki : Q] → ∞ shows that there is no lower bound for
gk(θ, 1) that is uniform in d.
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The fast decay of gk(
√
p, 1) as p runs over the set Pk (which we define as the set

of positive rational primes inert in k) suggests another problem. Let√
Pkk := {√pα : p ∈ Pk, α ∈ k} =

⋃
p∈Pk

√
pk.

The above set has uniformly bounded degree, and thus, by Northcott’s Theorem,
we may consider its counting function N(

√
Pkk,X) := |{β ∈

√
Pkk : H(β) ≤ X}|.

Now if d > 2 then the sum over the terms in (1.6) converges, so it is natural to
ask whether the asymptotics of N(

√
Pkk,X) are given simply by summing the

asymptotics of N(
√
pk,X) over Pk. The following result positively answers this

question.

Theorem 3. Let k be a number field of degree d. Then, as X ≥ 3 tends to infinity,
we have

N(
√

Pkk,X) =

{
Sk(1)X4 log logX +O(X4) if d = 2,(∑

Pk
2pd/2

pd+1

)
Sk(1)X2d +O(X2d−1L) if d > 2,

where L = log logX if d = 3 and L = 1 if d > 3. The implicit constant in the
O-term depends on k.

The case d = 2 is just slightly more difficult than d > 2 and requires additionally
Chebotarev’s density theorem and partial summation. However, it is not clear to
us how to handle the case d = 1.

Finally, let us mention that Theorem 1 can also be used to count the elements
in the nonzero, e.g., square classes k∗/(k∗)2. Each class has the form γ · (k∗)2
with some γ ∈ k∗. To count the number N(γ · (k∗)2, X) of elements in this square
class with height no larger than X we note that H(γα2) = H(

√
γα)2, and thus

N(γ · (k∗)2, X) = (1/2)(N(
√
γk,
√
X)−1). E.g., the square class (Q∗)2 has asymp-

totically (6/π2)X elements whereas the square class 11 · (Q∗)2 has asymptotically

only (
√

11/π2)X elements of height bounded by X.

Next we generalize Theorem 1 to higher dimensions. Let N(θkn, X) be the
number of points α = (α1, . . . , αn) ∈ kn with H((θα1, . . . , θαn)) ≤ X. Of course,

here H : Qn → [1,∞) is the (affine) absolute multiplicative Weil height, defined by

H(ω1, . . . , ωn)[K:Q] :=
∏

w∈MK

max{1, |ω1|w, . . . , |ωn|w}dw ,

where K is any number field containing ω1, . . . , ωn, the index w runs over the set
MK of all places of K, and dw := [Kw : Qw] denotes the local degree, where Qw is
the completion of Q with respect to the place below w.

Theorem 4. Let θ be a nonzero algebraic number, let k be a number field, denote
its degree by d, and let n be a positive rational integer. Then, as X ≥ 1 tends to
infinity, we have

N(θkn, X) = gk(θ, n)Sk(n)Xd(n+1) +O(Xd(n+1)−1L),

where L := log(X+1) if (n, d) = (1, 1), and L := 1 otherwise. The implicit constant
in the O-term depends on θ, on k, and on n.

Of course the invariance property (1.5) remains valid for arbitrary n instead of 1.
Ange [Ang, Corollaire 1.6] has shown a related result (although with different choice
of the height); instead of fixing one θ he allows a different θ for each coordinate
and his error term is completely explicit and quite sharp. On the other hand he
requires that a (positive) power of each θ lies in the ground field k.
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So far we have counted elements θα in θkn of bounded height. What if we
replace the set θk by θ + k? Or θk2 by θ1k × θ2k? More generally, we suppose
L1, . . . , Ln are linearly independent linear forms in n variables with coefficients in
Q and θ1, . . . , θn are in Q. Suppose we want to count elements of bounded height
in the set

{(L1(α) + θ1, . . . , Ln(α) + θn) : α ∈ kn}.

Now let α := (ω1/ω0, . . . , ωn/ω0) ∈ kn and define ω := (ω0, . . . , ωn). Then

H((L1(α) + θ1, . . . , Ln(α) + θn)) =
∏
w

max{|L0(ω)|w, . . . , |Ln(ω)|w}
[Kw :Qw ]

[K:Q] ,

where L0(ω) = ω0 and Li(ω) = Li(ω1, . . . , ωn) + θiω0 (for 1 ≤ i ≤ n), which
give us n+ 1 linearly independent linear forms. Here the right hand-side defines a
special case of a so-called adelic Lipschitz height HN (introduced in [Wid10b]) on
Pn(K), where K is any number field containing k, and the coefficients of L0, . . . ,Ln,
and the product runs over all places w of K. Thus, we need to count the points
P = (ω0 : · · · : ωn) ∈ Pn(k) with ω0 6= 0 and HN (P ) ≤ X.

These generalizations of Loher and Masser’s problem naturally motivate our
general theorem (Theorem 5), which is as follows. Given two number fields k ⊆ K
and an adelic Lipschitz height HN on K, we give an asymptotic formula for the
number of points P ∈ Pn(k) with HN (P ) ≤ X, as the parameter X tends to infinity.
To be more accurate, we also impose a minor additional assumption on the adelic
Lipschitz height HN , which seems fulfilled in all natural applications, in particular,
it holds in the aforementioned examples.

The special case K = k of our general theorem follows from a result in [Wid10b].
There, a complementary result was proved, in the sense that points of Pn(K) defined
over a proper subextension of K/k were excluded from the counting (which is
insignificant for the main term but was needed to obtain good error terms).

Now already with general linear forms as above it seems unlikely that the main
term can be brought into an as civilized form as for Theorem 4 (see also the remark
in [Wid10a, p. 1766 third paragraph]). Indeed, a considerable part of our work
consists of finding the simple representation of the constant in the special case of
Theorem 4. However, it turns out that the given representation is not so convenient
for theoretical considerations. Indeed, even the most obvious properties, such as
the invariance property (1.5), are not immediately clear from the present definition.
In Section 2 we establish a representation of gk(θ, n) as a product of local factors
(Proposition 2.2), which is a first step in the proof of Theorem 2 and also reveals
the invariance property (1.5).

At any rate, a situation involving linear forms similar to the above turns up if
we want to count solutions of a system of linear equations with certain restrictions
to the coordinates of the solutions. Here is an example. Consider the equation

√
2x+

√
3y +

√
5z = 0,(1.7)

defined over K = Q(
√

2,
√

3,
√

5). Using arguments from [Wid10a] one can easily
compute that the number of solutions (x, y, z) ∈ K3 with H((x, y, z)) ≤ X is
asymptotically given by(√

96− (
√

2 +
√

3−
√

5)2√
480

)8

SK(2)X24 +O(X23).

But what about the number of such solutions whose first two coordinates are ra-
tional? This question reduces to counting the elements (ω0 : ω1 : ω2) ∈ P2(Q) with
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bounded adelic Lipschitz height

HN ((ω0 : ω1 : ω2)) =
∏
w

max{|ω0|w, |ω1|w, |ω2|w, |
√

2ω1 +
√

3ω2√
5

|w}
[Kw :Qw ]

[K:Q] .

Applying our general theorem gives the following asymptotic formula

NL(X) = VN ′ ·
1

62ζ(3)
· (1 + 2 · 51/4 + 4 · 5−1/2)X3 +O(X2)(1.8)

for the number NL(X) of solutions (x, y, z) of (1.7) of height bounded by X and
with x, y ∈ Q. Here VN ′ denotes the volume of the set of points (z0, z1, z2) in R3

that satisfy the inequality

max{|z0|, |z1|, |z2|, |
√

2z1 +
√

3z2|/
√

5}max{|z0|, |z1|, |z2|, |
√

2z1 −
√

3z2|/
√

5} < 1.

For the computations we refer the reader to the appendix.
Finally, by Northcott’s theorem there is no need to restrict to a fixed number

field, and one could also consider all number fields of a given fixed degree simulta-
neously. Let us define the set

θk(n; e) = {(θα1, . . . , θαn) : [k(α1, . . . , αn) : k] = e}.

So Theorem 4 gives the asymptotics for the counting function N(θk(n; 1), X) =
N(θkn, X), and more generally, one could ask for the asymptotics of N(θk(n; e), X).
The special case θ ∈ k was considered in [Sch93], [Sch95], [Gao95], [MV08], [MV07],
and [Wid09]. Indeed, it is likely that the methods from [Wid10b] and [Wid09],
combined with those of the present article, are sufficient to solve this problem,
provided n is large enough. On the other hand, it would be interesting to know
whether Masser and Vaaler’s approach from [MV07] can be combined with ours to
handle the case n = 1.

The plan of the paper is as follows. In Section 2 we establish a product represen-
tation of gk(θ, n), and we use this to deduce some of its properties. This product
form is also the starting point in the proof of Theorem 2, which we give in Section
3. Then in Section 4 we state and prove some basic facts about lattice points, which
are required for the proofs of Theorem 5 and Theorem 3. Section 5 provides the
necessary notions such as adelic Lipschitz systems to state our general theorem.
Then in Section 6 we state the general theorem (Theorem 5), and in Section 7 we
give its proof. From Theorem 5 we deduce Theorem 4, which is done in Section 8.
The proof of Theorem 3 is carried out in Section 9. Finally, in the appendix we
calculate formula (1.8) using Theorem 5.

By a prime ideal we always mean a nonzero prime ideal. By E EOk, we mean
that E is a nonzero ideal of Ok. An empty product is always interpreted as 1, and
an empty sum is interpreted as 0.

2. Product representation and invariance properties of the constant

In this section, we use a product representation for the constant gk(θ, n) to derive
some of its properties. Let D, B be nonzero ideals of OK or Ok, respectively. For
convenience, we define

q(D, B) := q(D, B, n) :=
NK(D, uB)(n+1)/[K:k]

NkB
.

Clearly, q(D, B) is multiplicative in B, by which we mean that q(D, B1B2) =
q(D, B1)q(D, B2) whenever (B1, B2) = 1. Moreover, q(D, B) = q((D, uB), B), and
if B1 | B2, then q(uB2D, B1) = NkB

n
1 and q(uB1D, B2) = NkB

n
1 q(D, B

−1
1 B2).



8 CHRISTOPHER FREI AND MARTIN WIDMER

We now define local factors at prime ideals P of Ok, by

gP (D, n) :=
NkP − 1

NkPn+1 − 1

1 + (NkP
n − 1)

∞∑
j=0

q(D, P j)

 .

Let vP denote the P -adic valuation on k, normalized by vP (k∗) = Z. The infinite
sum converges, since

(2.1) q(D, P j) = NkP
vP (dD)−jq(D, P vP (dD))

holds for all j ≥ vP (dD). Clearly, gP (D, n) = gP (DP , n), where DP :=
∏

P|P PvP(D)

is the part of D lying over P .

Lemma 2.1. Let D be a nonzero ideal of OK and D := dD. Then∑
B|D

q(D, B)
∑

A|B−1D

µk(A)

NkA

∏
P |AB

NkP
n+1 −NkP

NkPn+1 − 1
=
∏
P

gP (D, n).

Proof. We start by investigating the expression

S(D,B) :=
∑

A|B−1D

µk(A)

NkA

∏
P |AB

NkP
n+1 −NkP

NkPn+1 − 1

for a given ideal B of Ok dividing D. Clearly,

S(D,B) =
∏
P |B

NkP
n+1 −NkP

NkPn+1 − 1

∑
A|B−1D

f(A),

where

f(A) :=
µk(A)

NkA

∏
P |A
P -B

NkP
n+1 −NkP

NkPn+1 − 1
.

The function f is multiplicative and f(Ok) = 1. For any prime ideal P dividing
B−1D, we have

f(P ) =

{
−NkP

−1 if P | B,

−(NkP
n − 1)/(NkP

n+1 − 1) if P - B.

Moreover, f(P e) = 0 if e > 1. We use∑
A|B−1D

f(A) =
∏

P |B−1D

(1 + f(P ))

to obtain

S(D,B) =
∏
P |B

NkP
n+1 −NkP

NkPn+1 − 1

∏
P |B−1D
P -B

NPn+1 −NkP
n

NkPn+1 − 1

∏
P |(B−1D,B)

NkP − 1

NkP

=
∏
P |D

NkP
n+1 −NkP

n

NkPn+1 − 1

∏
P |B

NkP
n+1 −NkP

NkPn+1 −NkPn

∏
P |(B−1D,B)

NkP − 1

NkP
.

Let T (D,B) := S(D,B)/
∏
P |D

NkP
n+1−NkP

n

NkPn+1−1 . Then the expression on the left-

hand side of the Lemma is given by∏
P |D

NkP
n+1 −NkP

n

NkPn+1 − 1

∑
B|D

q(D, B)T (D,B).
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Since both T (D,B) and q(D, B) are multiplicative in B, this is equal to

∏
P |D

NkP
n+1 −NkP

n

NkPn+1 − 1

vP (D)∑
j=0

q(D, P j)T (D,P j)

 .(2.2)

Elementary manipulations show that

T (D,P j) =
(NkP

n − 1)(NkP − 1)

NkPn+1 −NkPn
·



NkP
n+1 −NkP

n

(NkPn − 1)(NkP − 1)
if j = 0,

1 if 1 ≤ j < vP (D),

∞∑
j=vP (D)

NkP
vP (D)−j if j = vP (D).

Using (2.1), this shows that each of the factors in (2.2) has the form

(NkP − 1)(NkP
n − 1)

NkPn+1 − 1

 NkP
n+1 −NkP

n

(NkPn − 1)(NkP − 1)
+

∞∑
j=1

q(D, P j)

 = gP (D, n).

�

Lemma 2.1 with D := αθOK yields the following formula for gk(θ, n).

Proposition 2.2. If α is nonzero and in Ok with αθ ∈ OK then

(2.3) gk(θ, n) =
V

Nk(α)n

∏
P

gP (αθOK , n).

The next lemma shows that gk(θ, n) does not depend on the choice of α.

Lemma 2.3. Let A be a nonzero ideal of Ok and D a nonzero ideal of OK . Then

gP (uAD, n) = NkP
nvP (A)gP (D, n).

Proof. We have

q(uAD, P j) =

{
NkP

nj if 0 ≤ j < vP (A),

NkP
nvP (A)q(D, P j−vP (A)) if j ≥ vP (A).

The lemma follows by inserting these expressions for q(uAD, P j) in the definition
of gP (uAD, n). �

Given nonzero α, β ∈ Ok such that αθ, βθ ∈ OK , then we have

Nk(α)n
∏
P

gP (βθOK , n) =
∏
P

gP (αβθOK , n) = Nk(β)n
∏
P

gP (αθOK , n),

which shows the independence of gk(θ, n) from the choice of α.
To see invariance property (1.5) directly from (2.3), we need the following lemma.

Lemma 2.4. Let α ∈ k∗. Then

V (αθ, k, n) =
V (θ, k, n)

Nk(α)n
.

Proof. For any Archimedean place v of k, the map φv : kn+1
v → kn+1

v defined by
φv(z0, z1 . . . , zn) = (z0, |α|vz1, . . . , |α|vzn) is a linear automorphism of kn+1

v (con-

sidered as R[kv:R](n+1)) of determinant |α|[kv :R]nv . Therefore, |α|[kv :R]nv Vv(αθ, k, n) =
Vv(θ, k, n). �
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Lemma 2.3 and Lemma 2.4 imply that

(2.4) gk(αθ, n) = gk(θ, n)

for every nonzero α ∈ Ok, and hence for every α ∈ k∗. In particular, it suffices to
prove Theorem 2 and Theorem 4 for integral θ.

3. Proof of Theorem 2

We start off by estimating the volume V (θ, k, n).

Lemma 3.1. We have

V (θ, k, n) ≤ NK(θ)−n/[K:k].

Moreover, equality holds if and only if for every Archimedean place v of k the
absolute values |θ|w are equal for all w | v.

Proof. Let v be an Archimedean place of K, and let pv = pv(θ) :=
∏
w|v |θ|

[Kw :kv ]
[K:k]

w .

Consider the functions f
(1)
v , f

(2)
v : kn+1

v → R given by

f (1)v (z0, . . . , zn) :=
∏
w|v

max{|z0|v, |θ|w|z1|v, . . . , |θ|w|zn|v}
[Kw :kv ]

[K:k] ,

f (2)v (z0, . . . , zn) := max {|z0|v, pv|z1|v, . . . , pv|zn|v} .

Then f
(i)
v (tz) = |t|vf (i)v (z) holds for all t ∈ kv, z ∈ kn+1

v , and i ∈ {1, 2}. Moreover,

f
(1)
v ≥ f

(2)
v as functions on kn+1

v , with equality if and only if |θ|w is constant on
w | v.

Now Vol{z ∈ kn+1
v : f

(1)
v (z) < 1} ≤ Vol{z ∈ kn+1

v : f
(2)
v (z) < 1}, with equality if

and only if f
(1)
v = f

(2)
v . Evaluating both volumes gives

Vv ≤ p−n[kv :R]v ·

{
2n+1 if v is real,

πn+1 if v is complex,
(3.1)

with equality if and only if |θ|w is constant on w | v. Thus,

V (θ, k, n) ≤
∏
w|∞

|θ|
−n[Kw :R]

[K:k]
w = NK(θ)−n/[K:k],

with equality if and only if the condition in the lemma is satisfied. �

Let us recall some simple facts, which will be used in the sequel without further
notice. Let A, B be ideals of Ok, and let A, B be ideals of OK . Moreover, suppose
that P is a prime ideal of Ok and that P runs over all prime ideals of OK above
P . Then

• vP (dA) = maxP|P {dvP(A)/ePe}
• duA = A
• A | udA
• u(AB) = uAuB
• A | uA if and only if dA | A

Lemma 3.2. Let D be a nonzero ideal of OK and P a prime ideal of Ok. Then

gP (D, n) ≤ NK(DP )n/[K:k],

with equality if and only if DP = udDP .
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Proof. Lemma 2.3 and the fact that gP (D, n) = gP (DP , n) imply equality if DP =
udDP . Therefore, let us assume that vP (dD) =: l ≥ 1 and that DP is a proper
divisor of udDP = uP l. Again by Lemma 2.3, we may assume that uP - D.

Let

u :=
1

[K : k]

∑
P|P

fPvP(D),

where the sum runs over all prime ideals P of OK lying over P , and fP = fP|P =
[OK/P : Ok/P ] is the relative degree of P over P . Then the right-hand side in the
lemma is just Nk(P )nu. Since vP (dD) = l ≥ 1, we get u > 0. Let eP = eP|P be the

ramification index of P over P . As DP is a proper divisor of udDP, we conclude
that vP(D) < ePvP (dD) for at least one P | P . Thus,∑

P|P

fPvP(D) <
∑
P|P

fPePvP (dD) = [K : k] · l,

and therefore u < l. Similarly, we have

q(D, P j) = Nk(P )
n+1
[K:k] (

∑
P|P fP min{vP(D),jeP})−j ,

for any j ≥ 0. By our assumption that uP - D, we have vP(D) < jeP for some
P | P and all j ≥ 1. Replacing all the minima in the above formula by their second
arguments yields

(3.2) q(D, P j) < NkP
jn.

Similarly, replacing the minima by their first arguments yields

(3.3) q(D, P j) ≤ Nk(P )(n+1)u−j ,

and the inequality is strict if and only if j < l. Let 1 ≤ L ≤ l be the integer with
L− 1 < u ≤ L. We use (3.2) for j < L and (3.3) for j ≥ L to estimate q(D, P j) in
the definition of gP (D, n). This shows that gP (D, n) is bounded from above by

1

NkPn+1 − 1

(
NkP

Ln+1 −NkP
Ln + NkP

(n+1)u−L+n+1 −NkP
(n+1)u−L+1

)
,

with a strict inequality whenever l > 1. To prove the lemma, it is enough to show
that this expression is bounded by NkP

nu (with strict inequality if l = 1). To this
end, let h be the function given by

h(x) : = xnu+n+1 − xnu + x(n+1)u−L+1 − x(n+1)u−L+n+1 + xLn − xLn+1.

Hence, we need to show that h(NkP ) ≥ 0, with a strict inequality if l = 1. With
ũ := u− L+ 1 ∈ (0, 1] and

h1(x) := xnũ+n+1 − xnũ + x(n+1)ũ − x(n+1)ũ+n + xn − xn+1,

we have h(x) = xn(L−1)h1(x). If ũ = 1 then h1(x) ≡ 0. We observe that ũ = 1 is
impossible if l = 1, since u < l. Let us assume that 0 < ũ < 1 and prove that, in
this case, h1(x) > 0 for all x > 1.

The function h1(x) is in fact a polynomial in x1/[K:k]. We have

nũ+ n+ 1 >

{
(n+ 1)ũ+ n

n+ 1
>

{
(n+ 1)ũ

n
> nũ.

By Descartes’ rule of signs, h1(x) has at most three positive zeros (with multiplici-
ties). Since h1(1) = h′1(1) = h′′1(1) = 0 and limx→∞ h1(x) =∞, we have h1(x) > 0
for x > 1. �
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We can now easily finish the proof of Theorem 2. After multiplying with a
suitable element from k∗ we can assume that θ is an algebraic integer and choose
α := 1. From Proposition 2.2, Lemmata 3.1 and 3.2, and the observation that

NK(θ)
n

[K:k] =
∏
P

NK((θOK)P )
n

[K:k] ,

we immediately get that gk(θ, n) ≤ 1. Now gk(θ, n) = 1 holds if and only if we have
equality in Lemmata 3.1 and 3.2. This is the case if and only if θOK = udθOK and
for each Archimedean place v of k the |θ|w for w | v are all equal. The condition
for equality in Theorem 2 is just a uniform reformulation of these two statements.

4. Preliminaries on lattices

In this section we establish a basic counting result for lattice points, which will
be used in the proofs of Theorem 5 and Theorem 3.

For a vector x in Rm we write |x| for the Euclidean length of x. For a lattice Λ
in Rm we write λi = λi(Λ) (1 ≤ i ≤ m) for the successive minima of Λ with respect
to the Euclidean distance.

Definition 4.1. Let M and m > 1 be positive integers and let L be a non-negative
real. We say that a set S is in Lip(m,M,L) if S is a subset of Rm, and if there
are M maps φ1, . . . , φM : [0, 1]m−1 −→ Rm satisfying a Lipschitz condition

|φi(x)− φi(y)| ≤ L|x− y| for x,y ∈ [0, 1]m−1, i = 1, . . . ,M ,(4.1)

such that S is covered by the images of the maps φi.

We can now state and prove our counting result.

Lemma 4.2. Let m > 1 be an integer, let Λ be a lattice in Rm with successive
minima λ1, . . . , λm, and let a ∈ {1, . . . ,m}. Let S be a bounded set in Rm such
that the boundary ∂S of S is in Lip(m,M,L), S is contained in the zero-centered
ball of radius L, and 0 /∈ S. Then S is measurable and we have∣∣∣∣|S ∩ Λ| − VolS

det Λ

∣∣∣∣ ≤ c1(m)M max

{
La−1

λ1
a−1 ,

Lm−1

λ1
a−1λa

m−a

}
.

The constant c1(m) depends only on m.

Proof. Applying [Wid10b, Theorem 5.4] proves measurability and gives∣∣∣∣|S ∩ Λ| − VolS

det Λ

∣∣∣∣ ≤ c1(m)M max
0≤i≤m−1

Li

λ1 · · ·λi
.

First we assume L/λ1 ≥ 1.
Then we conclude

max
0≤i≤m−1

Li

λ1 · · ·λi
≤ max

0≤i≤m−a

La−1

λa−11

(
L

λa

)i
=
La−1

λa−11

max

{
1,
Lm−a

λm−aa

}
= max

{
La−1

λ1
a−1 ,

Lm−1

λ1
a−1λa

m−a

}
.

Next we assume L/λ1 < 1. Then we have |S ∩ Λ| = 0. Moreover, by Minkowski’s
second theorem,

VolS

det Λ
≤ c1(m)

Lm

λ1 · · ·λm
.



SCHANUEL’S THEOREM FOR HEIGHTS DEFINED VIA EXTENSION FIELDS 13

Furthermore,

Lm

λ1 · · ·λm
≤ Lm

λ1 · · ·λm
λ1
L

=
Lm−1

λ2 · · ·λm
≤ max

{
La−1

λ1
a−1 ,

Lm−1

λ1
a−1λa

m−a

}
.

�

We recall the following lemma, which is a special case of [Cas97, Lemma 1].

Lemma 4.3. Let Λ be a lattice in Rm. Then there exist linearly independent vectors
v1, . . ., vm in Λ such that |vi| = λi for 1 ≤ i ≤ m.

Lemma 4.4. Let Λ be a lattice in Rm. Then there exists a basis u1, . . ., um of Λ
such that

|ui| ≤ C0(m)λ−m+1
1 det Λ for 1 ≤ i ≤ m,

where C0(m) is an explicit constant depending only on m.

Proof. Let v1, . . ., vm be linearly independent vectors as in Lemma 4.3. By a lemma
of Mahler and Weyl (see [Cas97, Lemma 8, p. 135]) we obtain a basis u1, . . ., um
of Λ such that |ui| ≤ max{1,m/2}λi. Observing that |ui| ≤ |u1| · · · |um|/λm−11 , the
lemma follows from Minkowski’s second theorem. �

The following result will be used only for the proof of Theorem 3 in Section 9.

Lemma 4.5. Let Λ1 and Λ2 be lattices in Rd, and consider the lattice Λ := Λ1×Λ2

in R2d. Then we have

λ1(Λ) = min{λ1(Λ1), λ1(Λ2)},
λd+1(Λ) ≥ max{λ1(Λ1), λ1(Λ2)}.

Proof. The first assertion is obvious. For the second assertion we choose, by Lemma

4.3, d+ 1 linearly independent elements vj = (w
(1)
j , w

(2)
j ) ∈ Λ (1 ≤ j ≤ d+ 1) with

|vj | = λj . Clearly, not all of them can lie in Rd × {0}, and similarly not all of
them can lie in {0} × Rd. Suppose vj1 /∈ Rd × {0} and vj2 /∈ {0} × Rd. Hence

|vj1 | ≥ |w
(2)
j1
| ≥ λ1(Λ2) and |vj2 | ≥ |w

(1)
j2
| ≥ λ1(Λ1). This proves the lemma. �

5. Adelic Lipschitz heights

In [MV07] Masser and Vaaler have introduced what one may call Lipschitz
heights on Pn(K). This notion generalizes the absolute Weil height and allows
so-called Lipschitz distance functions instead of just the maximum norm at the
Archimedean places. Nonetheless, this notion is sometimes too rigid, as one often
also needs modification at a finite number of non-Archimedean places. This leads
naturally to the concept of adelic Lipschitz heights, introduced in [Wid10b].

5.1. Adelic Lipschitz systems on a number field. Let K be a number field
and recall that MK denotes the set of places of K, and that for every place w we
have fixed a completion Kw of K at w. We write dw = [Kw : Qw] for the local
degree, where Qw denotes the completion of Q with respect to the unique place of
Q that extends to w. The value set of w, Γw := {|α|w : α ∈ Kw} is equal to [0,∞)
if w is Archimedean, and to

{0, (NKPw)0, (NKPw)±1/dw , (NKPw)±2/dw , . . .}

(topologized by the trivial topology) if w is a non-Archimedean place corresponding
to the prime ideal Pw of OK . For w | ∞ we identify Kw with R or C, respectively,
and we identify C with R2.
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Definition 5.1. An adelic Lipschitz system N on K (of dimension n) is a set of
continuous maps

Nw : Kn+1
w → Γw w ∈MK(5.1)

such that for w ∈MK we have

(i) Nw(z) = 0 if and only if z = 0,

(ii) Nw(az) = |a|wNw(z) for all a ∈ Kw and all z ∈ Kn+1
w ,

(iii) if w | ∞: {z : Nw(z) = 1} is in Lip(dw(n+ 1),Mw, Lw) for some Mw, Lw,

(iv) if w -∞: Nw(z1 + z2) ≤ max{Nw(z1), Nw(z2)} for all z1, z2 ∈ Kn+1
w .

Moreover, we assume that the equality of functions

Nw(z) = max{|z0|w, . . . , |zn|w}(5.2)

holds for all but a finite number of w ∈MK .

If we consider only the functions Nw for w | ∞ then we get a Lipschitz system
(of dimension n) in the sense of Masser and Vaaler [MV07].

For all w ∈MK there are cw ≤ 1 in the value group Γ∗w = Γw\{0} with

cw max{|z0|w, . . . , |zn|w} ≤ Nw(z) ≤ c−1w max{|z0|w, . . . , |zn|w}(5.3)

for all z = (z0, . . . , zn) in Kn+1
w . Due to (5.2) we can and will assume that

cw = 1(5.4)

for all but a finite number of places w. We define

CfinN :=
∏
w-∞

c
− dw

[K:Q]
w ≥ 1,(5.5)

and

CinfN := max
w|∞
{c−1w } ≥ 1.(5.6)

For a prime ideal P of OK we write vP for the corresponding valuation on K,
normalized by vP(K∗) = Z. For a nonzero fractional ideal A of K and a non-
Archimedean place w of K, associated to the prime P, we define

|A|w := NK(P)−vP(A)/dw ,

so that |α|w = |αOK |w for α ∈ K∗. For w ∈MK let σw be the canonical embedding
of K in Kw, extended component-wise to Kn+1. For any nonzero ω ∈ Kn+1, let
iN (ω) be the unique fractional ideal of K defined by

Nw(σwω) = |iN (ω)|w
for all non-Archimedean w ∈MK , and we set by convention iN (0) := {0}.

Moreover, set

OK(ω) := ω0OK + · · ·+ ωnOK ,
so that OK(ω) is simply iN (ω) for any adelic Lipschitz system with (5.2) for all
finite places. Now by (5.3) we get

cw max{|ω0|w, . . . , |ωn|w} ≤ |iN (ω)|w ≤ c−1w max{|ω0|w, . . . , |ωn|w}.(5.7)

Recall that cw = 1 up to finitely many exceptions and let

FN := {A : A nonzero fractional ideal of K and cw ≤ |A|w ≤ c−1w for all w -∞}.
By unique factorization of fractional ideals, FN is finite. Moreover, for any ω ∈
Kn+1, we have

(5.8) iN (ω) = OK(ω)F(ω)
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for some F(ω) ∈ FN . Taking the product in (5.7) over all finite places with multi-
plicities dw shows that

CfinN
−[K:Q]

NKOK(ω) ≤ NKiN (ω) ≤ CfinN
[K:Q]

NKOK(ω).(5.9)

5.2. Adelic Lipschitz heights on Pn(K). Let N be an adelic Lipschitz system
on K of dimension n. Then the height HN on Kn+1 is defined by

HN (ω) :=
∏

w∈MK

Nw(σw(ω))
dw

[K:Q] .

Thanks to the product formula and (ii) from Definition 5.1 HN (ω) is invariant
under scalar multiplication by elements of K∗. Therefore HN is well-defined on
Pn(K) by setting

HN (P ) := HN (ω),

where P = (ω0 : · · · : ωn) ∈ Pn(K) and ω = (ω0, . . . , ωn) ∈ Kn+1. We note that by
(5.3), (5.5) and (5.6) we have

(CfinN CinfN )−1H(P ) ≤ HN (P ) ≤ CfinN CinfN H(P ),(5.10)

where H(P ) denotes the projective absolute multiplicative Weil height of P . Hence,
by Northcott’s theorem, {P ∈ Pn(K) : HN (P ) ≤ X} is a finite set for each X in
[0,∞).

6. The general theorem

Let k ⊆ K be number fields and let N be an adelic Lipschitz system of dimension
n on K. Recall that the functions Nw, n, and K are all part of the data of N . From
N we obtain an adelic Lipschitz height HN on Pn(K). Our goal in this section is
to derive an asymptotic formula for the counting function

NN (Pn(k), X) := |{P ∈ Pn(k) : HN (P ) ≤ X}|.
Let us set some necessary notation first. For each Archimedean place v of k we
define a function Nv on kn+1

v by

Nv(z) :=
∏
w|v

Nw(z)
dw

dv [K:k] .(6.1)

Let N ′ = N ′(N , k) be the collection of functions Nv, where Nv is as in (6.1) if v is
an Archimedean place of k and

Nv(z) := max{|z0|v, . . . , |zn|v}
if v is a non-Archimedean place of k. From now on we assume that N ′ is an
adelic Lipschitz system (of dimension n) on k (the conditions (i), (ii) and (iv) are
automatically satisfied but (iii) may possibly fail). Hence there exists a positive
integer MN ′ and a positive real number LN ′ such that the sets defined by Nv(z) = 1
lie in Lip(dv(n+ 1),MN ′ , LN ′) for all Archimedean places v of k. The sets defined
by Nv(z) < 1 are measurable and have a finite, positive volume, which we denote
by Vv, and set

VN ′ :=
∏
v|∞

Vv.(6.2)

We denote by σ1, . . . , σd the embeddings from k to R or C respectively, ordered
such that σr+s+i = σr+i for 1 ≤ i ≤ s. We define

σ : k −→ Rr × Cs = Rd(6.3)

σ(ω) = (σ1(ω), . . . , σr+s(ω))
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and extend σ component-wise to get a map

σ : kn+1 −→ Rm,(6.4)

where m = d(n+ 1).
For nonzero fractional ideals C of k, and D of K, we define the following subsets

of Rm:

Λ∗C(D) : = {σ(ω) : ω ∈ kn+1, Ok(ω) = C, iN (ω) = D},
ΛC(D) : = {σ(ω) : ω ∈ kn+1, Ok(ω) = C, iN (ω) ⊆ D},

Λ(D) : = {σ(ω) : ω ∈ kn+1, iN (ω) ⊆ D}.
Note that by (5.8) we have

D ∈ uCFN(6.5)

whenever Λ∗C(D) is non-empty, where uCFN denotes the finite set of fractional
ideals of the form uCF with F ∈ FN .

Let R be a set of integral representatives for the class group Clk. For any C ∈ R,
we choose a finite set SC of nonzero fractional ideals of K such that

SC contains all D with Λ∗C(D) 6= ∅.
Moreover, we choose a finite set T in the following way. For any D ∈ SC , let TC,D
be the set of all nonzero ideals A of OK such that ΛC(AD) 6= ∅. This set is finite,
since, similar as above, we have ADE ∈ uCFN for some ideal E of OK whenever
ΛC(AD) 6= ∅. Then we choose T to be any finite set of nonzero ideals of OK such
that

T contains all the sets TC,D for C ∈ R and D ∈ SC .

We define

(6.6) gNk :=
∑
C∈R

∑
D∈SC

∑
A∈T

µK(A)
∑
EEOk

µk(E)
NKD

n+1
[K:k]

det Λ(AD, CE)
,

where
Λ(AD, CE) = Λ(AD) ∩ σ((CE)n+1).

Note that the infinite sum in (6.6) taken over all nonzero ideals E converges abso-
lutely, as det Λ(AD, CE) ≥ (2−sNkCE)n+1. Although gNk seems to depend on the
choice of R, SC and T , we will see that this is actually not the case. Of course,
one could impose a minimality condition to render the choice of the sets SC and
T unique, but for the calculation of gNk it is convenient to have more flexibility for
the choices of these sets. From Theorem 5, (5.10), and Schanuel’s theorem it will
follow that gNk > 0.

Finally, we define

AN := AN (k) := |FN |Mr+s
N ′ ((LN ′ + CinfN ′ )CfinN )d(n+1)−1.(6.7)

We can now state the theorem.

Theorem 5. Let k ⊆ K be number fields, d := [k : Q], let N be an adelic Lipschitz
system (of dimension n) on K, and suppose that N ′ = N ′(N , k) is an adelic
Lipschitz system (of dimension n) on k. Then, as X ≥ 1 tends to infinity, we have

NN (Pn(k), X) = ω−1k (n+ 1)r+s−1RkVN ′g
N
k X

d(n+1) +O(|T |ANXd(n+1)−1L),

where L = 1 + log(CinfN ′ C
fin
N X) if (n, d) = (1, 1) and L = 1 otherwise. The implicit

constant in the O-term depends only on k and on n.

The hypothesis of N ′ being an adelic Lipschitz system is a minor one. For
instance, this hypothesis is certainly fulfilled when the functions Nw of N are
norms, as we shall prove in the appendix (see Lemma A1).
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7. Proof of Theorem 5

The proof of Theorem 5 makes frequent use of arguments from [MV07] and
[Wid10b] (some of which can be traced back to [Sch79], or even to Dedekind and
Weber).

Let q := r+ s− 1, Σ the hyperplane in Rq+1 defined by x1 + · · ·+ xq+1 = 0 and
δ = (d1, . . . , dq+1) with di = 1 for 1 ≤ i ≤ r and di = 2 for r+1 ≤ i ≤ r+s = q+1.
The map l(η) := (d1 log |σ1(η)|, . . . , dq+1 log |σq+1(η)|) sends k∗ to Rq+1. For q > 0
the image of the unit group O∗k under l is a lattice in Σ with determinant

√
q + 1Rk.

We now define a set SF (t) using our adelic Lipschitz system N ′ on k. Let F be
a bounded set in Σ and for t > 0 let F (t) be the vector sum

F (t) := F + δ(−∞, log t].(7.1)

We denote by exp the diagonal exponential map from Rq+1 to (0,∞)q+1. Any
embedding σi (1 ≤ i ≤ q + 1) corresponds to an Archimedean place v, and thus
gives rise to one of our Lipschitz distance functions Ni := Nv from N ′. We use
variables z1, . . . , zq+1 with zi in Rdi(n+1). Exactly as in [MV07] we define SF (t) in

Rm for m =
∑q+1
i=1 di(n+ 1) = d(n+ 1) as the set of all z1, . . . , zq+1 such that

(N1(z1)d1 , . . . , Nq+1(zq+1)dq+1) ∈ exp(F (t)).(7.2)

We note that

0 /∈ SF (t).(7.3)

Using (ii) from Definition 5.1 it is easily seen that SF (t) is homogeneously expand-
ing, i.e.,

SF (t) = tSF (1).(7.4)

Moreover, if F lies in a zero-centered ball of radius rF then

SF (t) ⊆ {(z1, . . . , zq+1) : Ni(zi) ≤ exp(rF )t for 1 ≤ i ≤ q + 1}.

The latter set lies in the the zero-centered ball of radius
√
mCinfN ′ exp(rF )t, and

thus

SF (t) ⊆ B0(
√
mCinfN ′ exp(rF )t).(7.5)

Note that for q = 0 we automatically have F = {0}, and our set SF (t) is precisely
the set defined by N1(z) ≤ t.

We now specify our set F when q > 0. We choose a basis u1, . . ., uq of the lattice
l(O∗k) as in Lemma 4.4. Set F := [0, 1)u1 + · · · + [0, 1)uq. So F is measurable of
(q-dimensional) volume

Vol(F ) =
√
q + 1Rk(7.6)

(and this remains true for q = 0). From the argument in [Wid10b] following (8.2),
we see that λ1(l(O∗k)) ≥ cd for some positive constant cd depending only on d. With
the estimate from Lemma 4.4, we get

|ui| ≤ C0(q)c−q+1
d Vol(F ) ≤ CdRk, (1 ≤ i ≤ q)(7.7)

for some positive constant Cd depending only on d. Note that F lies in the zero
centered ball of radius qCdRk, and this remains trivially true for q = 0. Therefore
by (7.5)

SF (t) ⊆ B0(κt),(7.8)

where

κ :=
√
mCinfN ′ exp(qCdRk).(7.9)
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Lemma 7.1. There exists a constant ck(n) depending only on k and n, a positive

integer M̃ , and a positive real L̃ with M̃ ≤ ck(n)Mq+1
N ′ , L̃ ≤ ck(n)(LN ′ + CinfN ′ ),

such that

∂SF (t) ∈ Lip(m, M̃, L̃t) and SF (t) ⊆ B0(L̃t).(7.10)

Proof. The second part follows immediately from (7.8) and (7.9).
Let us now prove the first part. For q = 0 our set SF (t) is precisely the set defined

by Nv(z) ≤ t, where v is the single Archimedean place of k. So the boundary of
SF (t) is the set {z : Nv(z) = t} = t{z : Nv(z) = 1}. By assumption N ′ is an adelic
Lipschitz system, and thus the latter set lies in Lip(m,MN ′ , LN ′t). This proves the
lemma for q = 0.

Suppose now that q ≥ 1. Then we can find 2q linear maps ψi : [0, 1]q−1 → Σ
parameterizing ∂F that, because of (7.7), will satisfy a Lipschitz condition with
constant (q − 1)CdRk (for q = 1 this is simply interpreted as |∂F | ≤ 2). The claim
now follows from [Wid10b, Lemma 7.1] by a simple computation. �

We conclude from [MV07, Lemma 4], (7.6), and (7.4) that SF (t) is measurable
and has volume

VolSF (t) = (n+ 1)qRkVN ′t
m.(7.11)

Lemma 7.2. We have

NN (Pn(k), X) = ω−1k

∑
C∈R

∑
D∈SC

|Λ∗C(D) ∩ SF (XNKD1/[K:Q])|.

Proof. Let P ∈ Pn(k) with homogeneous coordinates (ω0, . . . , ωn) = ω ∈ kn+1\{0}.
Recall the definition of the adelic Lipschitz system N ′. The functions Nv (or Ni)
will denote those associated with N ′, whereas Nw will denote a function associated
with the adelic Lipschitz system N on K.

Now

iN ′(ω) = Ok(ω)(7.12)

Suppose ε ∈ k∗. Then we have

iN ′(εω) = εiN ′(ω).

Hence the ideal class of iN ′(ω) is independent of the coordinates ω we have chosen.
In particular, we can choose ω such that iN ′(ω) = C for some unique C inR. Thus,
ω is unique up to scalar multiplication by units η, and moreover, iN (ω) := D ∈ SC .
The set F (∞) = F+Rδ is a fundamental set of Rq+1 under the action of the additive
subgroup l(O∗k). Because of Definition 5.1, (ii) we have

logNi(σi(ηω))di = logNi(σiω)di + di log |σiη|

for 1 ≤ i ≤ q + 1. Hence, there exist exactly ωk representatives ω of P with

(d1 logN1(σ1ω), . . . , dq+1 logNq+1(σq+1ω)) ∈ F (∞).

But the above is equivalent with

(N1(σ1ω)d1 , . . . , Nq+1(σq+1ω)dq+1) ∈ exp(F (∞)).

Furthermore

exp(F (t0)) = {(X1, . . . , Xq+1) ∈ exp(F (∞)) : X1 · · ·Xq+1 ≤ td0}.

Hence, for all ωk representatives ω of P as above, the inequality∏
v|∞

Nv(σv(ω))dv/d =
∏
v|∞

∏
w|v

Nw(σw(ω))dw/[K:Q] ≤ t0
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is equivalent to

σω ∈ SF (t0).

On the other hand,∏
w-∞

Nw(σw(ω))dw/[K:Q] = NKiN (ω)−1/[K:Q] = NKD−1/[K:Q].

As

HN (P ) =
∏
v|∞

∏
w|v

Nw(σw(ω))dw/[K:Q]
∏
w-∞

Nw(σw(ω))dw/[K:Q],

the claim follows. �

Lemma 7.3. We have

NN (Pn(k), X) =

ω−1k

∑
C∈R

∑
D∈SC

∑
A∈T

µK(A)
∑
EEOk

µk(E)|Λ(AD, CE) ∩ SF (XNKD1/[K:Q])|,

where E runs over all nonzero ideals of Ok.

Proof. We start off from Lemma 7.2 and we apply Möbius inversion twice to get
rid of the two coprimality conditions C and ∗.

Directly from the definition we get

ΛC(AD) =
⋃
B

Λ∗C(ABD),

where B runs over all nonzero ideals of OK . This is clearly a disjoint union. Note
that Λ∗C(ABD) 6= ∅ only when ABD lies in the finite set SC . Möbius inversion
leads then to

|Λ∗C(D) ∩ SF (XNKD1/[K:Q])| =
∑
A

µK(A)
∑
B

|Λ∗C(ABD) ∩ SF (XNKD1/[K:Q])|

=
∑
A

µK(A)|ΛC(AD) ∩ SF (XNKD1/[K:Q])|,

where the sums run over all nonzero ideals in OK . Next note that by definition of
TC,D we have ΛC(AD) = ∅ whenever A /∈ TC,D. As TC,D ⊆ T we can restrict the
last sum to A ∈ T and we get

|Λ∗C(D) ∩ SF (XNKD1/[K:Q])| =
∑
A∈T

µK(A)|ΛC(AD) ∩ SF (XNKD1/[K:Q])|.

We now deal with the second coprimality condition C . Also directly from the
definition we get

Λ(AD, EC) = Λ(AD) ∩ σ((EC)n+1) =
⋃

BEOk

ΛECB(AD) ∪ {0}.

Again, B runs over all nonzero ideals ofOk and the union is disjoint. As σ((EC)n+1)
is a lattice and SF (XNKD1/[K:Q]) is bounded we conclude from the latter equality
that ΛECB(AD)∩SF (XNKD1/[K:Q]) is empty for all but finitely many B. Möbius
inversion and (7.3) lead therefore to

|ΛC(AD) ∩ SF (XNKD1/[K:Q])|

=
∑
EEOk

µk(E)
∑
BEOk

|ΛECB(AD) ∩ SF (XNKD1/[K:Q])|

=
∑
EEOk

µk(E)|Λ(AD, CE) ∩ SF (XNKD1/[K:Q])|.
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In view of Lemma 7.2 this proves the claim. �

We choose a positive real Γ such that for any C ∈ R and any D ∈ SC

Γ ≤ NkC

NK(D)1/[K:k]
.(7.13)

Before we proceed note that if SC is chosen minimal for all C ∈ R (i.e. SC =
{iN (ω) : ω ∈ kn+1,Ok(ω) = C}) then it follows from (5.9) that we can choose

Γ = CfinN
−d

, and moreover, |SC | ≤ |FN |.

Lemma 7.4. Let λ1 = λ1(Λ(AD, CE)) be the first successive minimum of the

lattice Λ(AD, CE), and let M̃ and L̃ be as in Lemma 7.1. Then we have

|Λ(AD, CE) ∩ SF (XNKD1/[K:Q])| =VolSF (1)NKD
n+1
[K:k]Xm

det Λ(AD, CE)

+O

(
M̃

NKD
m−1
[K:Q] (L̃X)m−1

λm−11

)
,

where the constant in the O-term depends only on m. Moreover, with Γ as in (7.13)
we have

λ1 ≥ NK(D)1/[K:Q](ΓNk(E))1/d.

And finally, with κ as in (7.9), if NkE > (κX)d/Γ then

Λ(AD, CE) ∩ SF (XNKD1/[K:Q]) = ∅.

Proof. For the first assertion we use (7.3) and apply Lemma 4.2 with a = m.
Thanks to (7.8) and Lemma 7.1 the required conditions are satisfied, and using
(7.4) the first result drops out.

Now for the second statement we first observe that λ1 is at least as large as the
first successive minimum of the lattice σ(CE). But it is well-known that the latter
is at least Nk(CE)1/d, see, e.g., [MV07, Lemma 5]. Now as D ∈ SC and by the
definition of Γ we get NkC ≥ ΓNK(D)1/[K:k] and this yields the second assertion.

The last claim follows upon combining the above estimate for λ1 with (7.3),
(7.8). �

We can now conclude the proof of Theorem 5. Let us first assume that (n, d) 6=
(1, 1). Combining Lemma 7.3, Lemma 7.4 and (7.11) gives the main term as in
Theorem 5. The error term is bounded by∑

C∈R

∑
D∈SC

∑
A∈T

∑
EEOk

O

(
M̃

NKD
m−1
[K:Q] (L̃X)m−1

λm−11

)

≤
∑
C∈R

∑
D∈SC

∑
A∈T

∑
EEOk

O

(
M̃(L̃X)m−1

Γ(m−1)/dNkE(n+1)−1/d

)

≤
∑
C∈R

∑
D∈SC

∑
A∈T

O

(
M̃(L̃X)m−1

Γ(m−1)/d

)

=O

(∑
C∈R

|SC ||T |
M̃(L̃X)m−1

Γ(m−1)/d

)
This proves the Theorem in the case (n, d) 6= (1, 1) except that the constant in the
error term is different from the one in the statement of the theorem. In particular,
it shows that the main term is independent of the particular choice of the sets SC .
However, if we choose all the sets SC to be minimal then, by the remark just after
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(7.13), we can choose Γ = CfinN
−d

, and |SC | ≤ |FN |. This, and not forgetting the

definition of M̃ and L̃ from Lemma 7.1, yields the desired error term.
We now assume (n, d) = (1, 1) (which of course means k = Q, R = {C}, ωk = 2).

Using also the last part of Lemma 7.4 we conclude

NN (P1(Q), X) =

1

2

∑
D∈SC

∑
A∈T

µK(A)
∑
EEZ

NQE≤κX/Γ

µQ(E)|Λ(AD, CE) ∩ SF (XNKD1/[K:Q])|

=
1

2

∑
D∈SC

∑
A∈T

µK(A)
∑
EEZ

µQ(E)
VolSF (1)NKD

2
[K:Q]X2

det Λ(AD, CE)

+O

 ∑
D∈SC

∑
A∈T

∑
EEZ

NQE>κX/Γ

VolSF (1)NKD
2

[K:Q]X2

det Λ(AD, CE)



+O

 ∑
D∈SC

∑
A∈T

∑
EEZ

NQE≤κX/Γ

M̃NKD
1

[K:Q] L̃X

λ1

 .

Now the first term gives the main term as before. For the second term we use
Minkowski’s first theorem to estimate the determinant in terms of λ1, and then a
simple computation using Lemma 7.4 and (7.8) gives the error term O(|SC ||T |(1 +
κX/Γ). For the last error term we use again Lemma 7.4, and again a simple
computation yields the error term

O(|SC ||T |(M̃L̃/Γ)X(1 + log(κX/Γ)).

To get the right error term we choose again SC to be minimal so that we can take

Γ = CfinN
−1

, and |SC | ≤ |FN |. This proves Theorem 5.

8. Proof of Theorem 4

In this section, we deduce Theorem 4 from Theorem 5. Recall the simple facts
mentioned just before Lemma 3.2.

As mentioned after Lemma 2.4, we can and will assume that θ is an algebraic
integer. Let K := k(θ), and let N be the adelic Lipschitz system on K of dimension
n defined by

Nw(z) := max{|z0|w, |θ|w|z1|w, . . . , |θ|w|zn|w},
so

(8.1) iN (ω) = ω0OK + θω1OK + · · ·+ θωnOK .

Lemma 8.1. We have

N(θkn, X) = NN (Pn(k), X) +O(Xnd),

where the implicit constant in the error term depends only on k, θ, and n.

Proof. The points α = (ω1/ω0, . . . , ωn/ω0) ∈ kn with H(θα) ≤ X are in one–to–
one correspondence with the projective points P = (ω0 : · · · : ωn) ∈ Pn(k) with
ω0 6= 0 and HN (P ) ≤ X.

If n > 1 then we can apply Theorem 5 with n−1 and the adelic Lipschitz system
given by the norm functions (see Lemma A1 in the appendix)

(8.2) Nw((z1, . . . , zn)) := max{|θ|w|z1|w, . . . , |θ|w|zn|w}
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(with R, SC and T chosen in such a way that |T | is minimal) to see that the number
of such points P with ω0 = 0 is O(Xnd). This trivially remains true for n = 1. �

Since the functions Nw are norms, the adelic Lipschitz system N satisfies the
hypothesis of Theorem 5. As our choice of R, SC and T in Theorem 5 will depend
only on k, n and θ, we obtain

(8.3) NN (Pn(k), X) = ω−1k (n+ 1)r+s−1RkVN ′g
N
k X

d(n+1) +O(Xd(n+1)−1L),

where L := log(X + 1) if (n, d) = (1, 1) and L := 1 otherwise. The implicit
constant in the error term depends only on k, θ, and n.

We notice that

(8.4) VN ′ = (2rπs)n+1V (θ, k, n),

with V (θ, k, n) as in (1.3). To prove the theorem, we need to compute gNk . First
we choose the sets R, SC and T . Denote

D := d(θOK).

For R we choose any system of integral representatives for the class group Clk with

(8.5) (C,D) = Ok for all C ∈ R.

We will see in Lemma 8.2, (i), that

(8.6) SC := {uC(θOK , uB) : B EOk, B | D}

is a valid choice for SC . For T , we take the finite set

(8.7) T :=
⋃
C∈R

⋃
D∈SC

TC,D ∪ {AEOK : A | θOK}.

Lemma 8.2.

(i) Let ω ∈ kn+1 with Ok(ω) = C. Then iN (ω) ∈ SC .
(ii) Let A be an ideal of OK and B an ideal of Ok. Then d(A, uB) = (dA, B).

(iii) Let B be an ideal of Ok with B | D. Then d(θOK , uB) = B.

Proof. (i): We have ω0OK + · · ·+ ωnOK = uOk(ω) = uC, so

iN (ω) = uC(ω0(uC)−1 + θ(ω1(uC)−1 + · · ·+ ωn(uC)−1)) = uC(ω0(uC)−1, θOK).

Moreover, since θOK | uD, we obtain

(ω0(uC)−1, θOK) = (ω0(uC)−1, uD, θOK) = (θOK , uB),

for B := (ω0C
−1, D) | D.

(ii): Let P be a prime ideal of Ok and uP =
∏

P PeP its factorization in OK . Then

vP (d(A, uB)) = max
P
{dmin{vP(A), vP(uB)}/ePe}

= max
P
{min{dvP(A)/ePe, vP (B)}}

= min{max
P
{dvP(A)/ePe}, vP (B)} = vP ((dA, B)).

(iii): By (ii), we have d(θOK , uB) = (D,B) = B. �

The first step in our computation of gNk is to evaluate the determinant of the
lattice Λ(AD, CE) = Λ(AD) ∩ σ((CE)n+1).

Lemma 8.3. Let A, B be nonzero ideals of OK and Ok, respectively. Then

det Λ(A, B) = (2−s
√
|∆k|)n+1 ·Nk(dA ∩B) ·Nk

(
d
(
A(θOK ,A)−1

)
∩B

)n
.
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Proof. Let ω = (ω0, . . . , ωn) ∈ kn. Clearly, σω ∈ Λ(A, B) if and only if ωi ∈ B for
all 0 ≤ i ≤ n, ω0 ∈ A, and θωi ∈ A for all 1 ≤ i ≤ n. For ωi ∈ Ok, we have

θωi ∈ A if and only if A(θOK ,A)−1 | ωiOK .

Therefore, we obtain

Λ(A, B) = σ
(

(dA ∩B)×
(
d
(
A(θOK ,A)−1

)
∩B

)n)
.

�

Let A ∈ T and let B be an ideal of Ok with B | D. To facilitate further notation,
we define ideals A and A1 of Ok by

A = A(A, B) := d(A(θOK , uB)) and(8.8)

A1 = A1(A, B) := d
(
A(θOK , uB)(θOK ,AuB)−1

)
| A.(8.9)

For any D = uC(θOK , uB) ∈ SC and for any nonzero ideal E of Ok we have

Nk(d(AD) ∩ CE) = NkC ·Nk(A ∩ E).(8.10)

Clearly, we have (θOK ,A(θOK , uB)) = (θOK ,AuB). Furthermore, by our choice
of R with (8.5), we have (uC, θOK) = OK . Therefore, we obtain

Nk

(
d
(
(AD)(θOK ,AD)−1

)
∩ CE

)
= NkC ·Nk (A1 ∩ E) .(8.11)

Moreover, we have

NKD(n+1)/[K:k] = NkC
n+1 ·NK(θOK , uB)(n+1)/[K:k].(8.12)

Lemma 8.4. Let B be an ideal of Ok with B | D, let D = uC(θOK , uB) ∈ SC , let
A ∈ T , and let E be a nonzero ideal of Ok. Then

NKD
n+1
[K:k]

det Λ(AD, CE)
= (2−s

√
|∆k|)−(n+1) · NK(θOK , uB)

n+1
[K:k]

Nk(A ∩ E) ·Nk (A1 ∩ E)
n .

Proof. We apply Lemma 8.3 and use (8.10), (8.11), and (8.12). �

Lemma 8.5. We have

gNk = c0
∑
B|D

NK(θOK , uB)
n+1
[K:k]

∑
A∈T

µK(A)
∑
EEOk

µk(E)

Nk(A ∩ E) ·Nk(A1 ∩ E)n
,

where A = A(A, B), A1 = A1(A, B), and c0 := hk2s(n+1)(
√
|∆k|)−(n+1) and E

runs over all nonzero ideals of Ok.

Proof. Recall the definition of gNk in (6.6). The expression on the right-hand side
in Lemma 8.4 does not depend on C. With (8.6), a simple computation proves the
lemma. �

The inner sum over E in Lemma 8.5 can be handled by the following lemma.

Lemma 8.6. Let J1 | J be nonzero ideals of Ok and let

ξ :=
∑
EEOk

µk(E)

Nk(J ∩ E) ·Nk(J1 ∩ E)n
.

If J1 6= Ok then ξ = 0. If J1 = Ok then

ξ =
1

ζk(n+ 1)Nk(J)

∏
P |J

NkP
n+1 −NkP

NkPn+1 − 1
.
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Proof. Let f(E) := µk(E) ·Nk(J,E) ·Nk(J1, E)n. Then f is multiplicative and

ξ =
1

Nk(JJn1 )

∑
EEOk

f(E)

NkEn+1
.

Clearly, this Dirichlet series converges absolutely for all n > 0. Let us compute its
Euler product expansion. For any prime ideal P of Ok, we have f(P e) = 0 if e ≥ 2.
Moreover, f(Ok) = 1 and

f(P ) =


−NkP

n+1 if P | J1,

−NkP if P | J and P - J1,

−1 if P - J .

We obtain the formal expansion∑
EEOk

f(E)

NkEs
=
∏
P |J1

(
1− NkP

n+1

NkP s

) ∏
P |J
P -J1

(
1− NkP

NkP s

)∏
P -J

(
1− 1

NkP s

)
.

Since the infinite product
∏
P -J (1−NkP

−s) converges absolutely for s > 1, we

obtain ξ = 0 whenever J1 6= Ok. If J1 = Ok and s = n+1, the expression simplifies
to ∑

EEOk

f(E)

NkEn+1
=

1

ζk(n+ 1)

∏
P |J

NkP
n+1 −NkP

NkPn+1 − 1
.

�

Recall the definition of A and A1 from (8.8) and (8.9). We have A1 = Ok if and
only if A(θOK , uB) = (θOK ,AuB), which is equivalent to A(θOK , uB) | θOK , or

(8.13) A | θOK(θOK , uB)−1.

Recall that, by (8.7), the set T contains all ideals A of OK with A | θOK . Also, for
every A with (8.13), we have A = d(A(θOK , uB)) | D. We obtain

gNk = c1
∑
B|D

NK(θOK , uB)
n+1
[K:k]

∑
A|D

1

NkA

∏
P |A

NkP
n+1 −NkP

NkPn+1 − 1
s0(A,B),

where c1 := ζk(n+ 1)−1c0 = hk2s(n+1)ζk(n+ 1)−1(
√
|∆k|)−(n+1) and

s0(A,B) :=
∑

A with (8.13)
d(A(θOK ,uB))=A

µK(A).

If s0(A,B) is not zero then there is at least one A with

A = d(A(θOK , uB)) ⊆ d(θOK , uB) = B.

For the last equality, we used Lemma 8.2, (iii). We replace A by B−1A to obtain

gNk = c1
∑
B|D

NK(θOK , uB)
n+1
[K:k]

NkB

∑
A|B−1D

1

NkA

∏
P |AB

NkP
n+1 −NkP

NkPn+1 − 1
s(A,B),

where

s(A,B) :=
∑

A with (8.13)
d(A(θOK ,uB))=AB

µK(A).

Lemma 8.7. Let J, K be nonzero ideals of OK and J a nonzero ideal of Ok. Then
d(JK) = JdK if and only if

(8.14) J | uJ(udK)K−1 and J - u(P−1J)(udK)K−1 for all prime ideals P | J .
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Proof. Clearly,

J | uJ(udK)K−1 ⇐⇒ JK | u(JdK)⇐⇒ d(JK) | JdK

and

J - u(P−1J)(udK)K−1 ⇐⇒ JK - u(P−1JdK)⇐⇒ d(JK) - (P−1J)dK.

�

Lemma 8.8. If A | B−1D then s(A,B) = µk(A).

Proof. By Lemma 8.2, (iii), we have d(θOK , uB) = B. By the previous lemma,
d(A(θOK , uB)) = AB is equivalent to

(8.15) A | uAuB(θOK , uB)−1 and A - u(P−1A)uB(θOK , uB)−1 for all P | A.

Clearly, conditions (8.13) and (8.15) imply

(8.16) A | (θOK(θOK , uB)−1, uAuB(θOK , uB)−1) = (θOK(θOK , uB)−1, uA)

and

(8.17) A - u(P−1A) for all prime ideals P | A.

In fact, (8.13) and (8.15) are equivalent to (8.16) and (8.17). Indeed, (8.16) imme-
diately implies (8.13) and the first part of (8.15). For the second part of (8.15), we
use that every A | θOK(θOK , uB)−1 satisfies (A, uB(θOK , uB)−1) = OK . Thus,

s(A,B) =
∑

AEOK
(8.13) and (8.15)

µK(A) =
∑

AEOK
(8.16) and (8.17)

µK(A).

By inclusion-exclusion for (8.17), we obtain

s(A,B) =
∑
F |A

µk(F )
∑

A|(θOK(θOK ,uB)−1,u(F−1A))

µK(A).

The last sum is 1 if F = A. Moreover,

F−1A | B−1D = d(θOK)(d(θOK , uB))−1 | d(θOK(θOK , uB)−1),

so F 6= A implies that

(θOK(θOK , uB)−1, u(F−1A)) 6= OK .

This shows that the last sum is 0 whenever F 6= A. �

We obtain

gNk = c1
∑
B|D

NK(θOK , uB)(n+1)/[K:k]

NkB

∑
A|B−1D

µk(A)

NkA

∏
P |AB

NkP
n+1 −NkP

NkPn+1 − 1
,

and Theorem 4 follows by substituting this and (8.4) in (8.3).

9. Proof of Theorem 3

In this section we will use not only Landau’s O-notation but also Vinogradov’s
symbol �. All implied constants depend solely on k. As we will encounter expres-
sions like log logX we assume throughout the entire section that X ≥ 3. Our main
task will be to prove the following proposition.

Proposition 9.1. Suppose p ∈ Pk. Then, as X ≥ 3 tends to infinity, we have

N(
√
pk∗, X) =

2pd/2

pd + 1
Sk(1)X2d +O

(
X2d−1

p(d−1)/2
+Xd logX +Xd log p

)
.
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We choose the adelic Lipschitz system N (of dimension 1) on K := k(
√
p),

defined by

Nw((z0, z1)) := max{|z0|w, |
√
p|w|z1|w}

for any place w of K. Recall the definition of CfinN and CinfN from (5.5) and (5.6),
and note that we can take

CfinN = CinfN =
√
p.(9.1)

The adelic Lipschitz system N on K leads to an adelic Lipschitz system N ′ on k
as in Section 6. Note that for any Archimedean v from k and Nv from N ′ we have
Nv((z0, z1)) = max{|z0|v,

√
p|z1|v}. Thus we can also take

CinfN ′ =
√
p.(9.2)

Lemma 9.2. We have

N(
√
pk∗, X) = NN (P1(k);X)− 2.

Proof. The map α 7→ (1 : α) is a one-to-one correspondence between k∗ and
P1(k)\{(0 : 1), (1 : 0)} Moreover, H(

√
pα) = HN ((1 : α)). Hence there is a one-to-

one correspondence between {α ∈ k∗ : H(
√
pα) ≤ X} and {P ∈ P1(k)\{(0 : 1), (1 :

0)} : HN (P ) ≤ X}. As HN ((0 : 1)) = HN ((1 : 0)) = 1 the claim follows. �

We can now basically follow the proof of Theorem 5 using our specific adelic
Lipschitz system. However, to get the good error terms regarding p an additional
idea is required. We will use the same notation as in Sections 6 and 7. In particular,
recall the definition of the set SF (t) introduced in (7.2). As in (8.5), we choose a
system R of integral representatives for Clk such that (C, pOk) = Ok for all C ∈ R.

Lemma 9.3. We can choose SC := {uC,√puC}.

Proof. As in (8.1) we have iN (ω) = ω0OK +
√
pω1OK . So if Ok(ω) = C we get√

puC ⊆ iN (ω) ⊆ uC. As
√
pOK is a prime ideal this proves the lemma. �

With this choice of the sets SC we directly verify that Γ from (7.13) can be
chosen to be

Γ := p−d/2.(9.3)

From now on C is always in R, D is always in SC , and A will always be in T .

Lemma 9.4. We can choose T such that |T | ≤ 2.

Proof. Recall that we may choose T = ∪C∈R ∪D∈SC TC,D. By definition we have

TC,D = {BEOK : ΛC(DB) 6= ∅}
= {BEOK : Λ∗C(EDB) 6= ∅ for some EEOK}
⊆ {BEOK : EDB ∈ SC for some EEOK}.

Now using that SC = {uC,√puC} and that
√
pOK is a prime ideal we see that

TC,D ⊆ {OK ,
√
pOK} for any D ∈ SC . Thus |T | = | ∪C∈R ∪D∈SCTC,D| ≤ 2. �

Lemma 9.5. Let σ be as in (6.3). We have

Λ(AD, CE) ⊆ σ(CE)× σ(CE).

Moreover, if D =
√
puC then we have

Λ(AD, CE) ⊆ σ
(
CEp(CE, pOk)−1

)
× σ(CE).
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Proof. The first assertion is clear from the definition. For the second assertion we
could use the last equality in the proof of Lemma 8.3, but we prefer to give a direct
argument here. Note that σω ∈ Λ(AD) implies D | iN (ω) = (ω0OK ,

√
pω1OK).

As D =
√
puC we conclude

√
pOK | ω0OK , and thus pOk | ω0Ok. Therefore

ω0 ∈ CE ∩ pOk. This proves the second assertion. �

Next we use a trick, simpler but reminiscent of those used in [Wid13, Section 6].

To this end we introduce a linear automorphism Φ of determinant 1 on (Rr × Cs)2

by

Φ(z0, z1) := (p−1/4z0, p
1/4z1).(9.4)

Lemma 9.6. Write Λ := Λ(AD, CE). If D = uC then we have

λ1(ΦΛ) ≥ p−1/4Nk(CE)1/d,

λd+1(ΦΛ) ≥ p1/4Nk(CE)1/d.

If D =
√
puC then we have

λ1(ΦΛ) ≥

{
p−1/4Nk(CE)1/d if pOk | E,
p1/4Nk(CE)1/d if pOk - E.

λd+1(ΦΛ) ≥

{
p1/4Nk(CE)1/d if pOk | E,
p3/4Nk(CE)1/d if pOk - E.

Proof. By Lemma 9.5 we have ΦΛ ⊆ Λ1 × Λ2, where Λ2 := p1/4σ(CE) and Λ1

is p−1/4σ(CE) if D = uC and p−1/4σ
(
CEp(CE, pOk)−1

)
if D =

√
puC. Recall

the fact (already used in Lemma 7.4) that λ1(σA) ≥ NkA
1/d for any nonzero

ideal A of k. Using this and applying Lemma 4.5 the result follows from an easy
computation. �

Lemma 9.7. There exist constants c1 = c1(k) and M = M(k) depending solely
on k such that, with L = c1p

−1/4t, we have ΦSF (t) ⊆ B0(L) and the boundary
∂ΦSF (t) ∈ Lip(2d,M,L).

Proof. The adelic Lipschitz system N on K leads to an adelic Lipschitz system N ′
on k as in Section 6. The latter is used to define SF (t).

Now notice that applying Φ to SF (t) gives the same as defining SF (t) using the
standard adelic Lipschitz system defined by Nv(z0, z1) = max{|z0|v, |z1|v} for all v
and then homogeneously shrinking this set by the factor p−1/4. The claims then
follow immediately from Lemma 7.1, (7.9), and (7.8) applied to the standard adelic
Lipschitz system. �

Lemma 9.8. Let E1 := Xd/Nk(E), and let E2 := X2d−1/(p(d−1)/2Nk(E)2−1/d).
Then we have

|Λ(AD, CE) ∩ SF (XNKD1/(2d))| =VolSF (1)NKDX2d

det Λ(AD, CE)

+O

({
E1 + E2 if pOk - E
pd/2E1 + pd−1/2E2 if pOk | E

)
.

Moreover, there is a constant γ = γ(k) ≥ 1 depending only on k, such that
|Λ(AD, CE) ∩ SF (XNKD1/(2d))| = 0 whenever NkE > (γpX)d.

Proof. First note that

|Λ(AD, CE) ∩ SF (XNKD1/(2d))| = |ΦΛ(AD, CE) ∩ ΦSF (XNKD1/(2d))|.
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Now we apply Lemma 4.2 with a = d+ 1 combined with Lemma 9.7 to conclude

|ΦΛ(AD, CE) ∩ ΦSF (XNKD1/(2d))| = VolSF (1)NKDX2d

det Λ(AD, CE)

+O

(
max

{
p−d/4XdNKD1/2

λ1(ΦΛ)d
,
p−(2d−1)/4X2d−1NKD1−1/(2d)

λ1(ΦΛ)dλd+1(ΦΛ)d−1

})
.

Finally, we use Lemma 9.6 to estimate λ1(ΦΛ) and λd+1(ΦΛ), and the first claim
follows from a simple computation. The second claim follows from Lemma 7.4
combined with (9.2) and (9.3). �

We are now in the position to prove Proposition 9.1. In the introduction we
already computed the main term, see (1.6). Proceeding exactly as in the proof of
Theorem 5 in the case (n, d) = (1, 1), we obtain

NN (P1(k);X) =
2pd/2

pd + 1
Sk(1)X2d

+O

∑
C∈R

∑
D∈SC

∑
A∈T

∑
EEOk

NkE>(γpX)d

Vol ΦSF (XNKD1/(2d))

det ΦΛ(AD, CE)



+O

∑
C∈R

∑
D∈SC

∑
A∈T

∑
EEOk

NkE≤(γpX)d

E1 + E2



+O


∑
C∈R

∑
D∈SC

∑
A∈T

∑
EEOk

NkE≤(γpX)d

pOk|E

pd/2E1 + pd−1/2E2

 .

For the first error term we apply Minkowski’s second theorem and Lemma 9.7 to
get the upper bound

Vol ΦSF (XNKD1/(2d))

det ΦΛ(AD, CE)
� L2d

λ1(ΦΛ)dλd+1(ΦΛ)d
,

where L � p−1/4XNKD1/(2d). Summing the above over the finite sums can be
handled by Lemmata 9.3 and 9.4. Now for the infinite sum over the ideals E, we
apply Lemma 9.6, and a straightforward computation (using the dichotomy P | E,
P - E) yields the upper bound

� Xd

p3d/2
.

For the second error term we note that∑
EEOk

NkE≤(γpX)d

E1 =
∑
EEOk

NkE≤(γpX)d

Xd

NkE
� Xd log((γpX)d)� Xd logX +Xd log p,

and ∑
EEOk

NkE≤(γpX)d

E2 ≤
X2d−1

p(d−1)/2

∑
EEOk

NkE
−2+1/d � X2d−1

p(d−1)/2
.
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Then we apply Lemmata 9.3 and 9.4 to conclude∑
C∈R

∑
D∈SC

∑
A∈T

∑
EEOk

NkE≤(γpX)d

E1 + E2 � Xd logX +Xd log p+
X2d−1

p(d−1)/2
.

Similar straightforward calculations yield∑
EEOk

NkE≤(γpX)d

pOk|E

pd/2E1 �
Xd

pd/2
logX,

and ∑
EEOk

NkE≤(γpX)d

pOk|E

pd−1/2E2 �
X2d−1

p3d/2−1
.

Thus, applying again Lemmata 9.3 and 9.4, we see that∑
C∈R

∑
D∈SC

∑
A∈T

∑
EEOk

NkE≤(γpX)d

pOk|E

pd/2E1 + pd−1/2E2 � Xd logX +
X2d−1

p(d−1)/2
.

Combining these estimates and Lemma 9.2 completes the proof of Proposition 9.1.
We can now sum N(

√
pk∗, X) over all p ∈ Pk. The next lemma tells us that we

can restrict the summation to p ≤ X2.

Lemma 9.9. For any α ∈ k∗ and any p ∈ Pk we have H(
√
pα) ≥ √p.

Proof. Let x ∈ K and let P be the prime ideal
√
pOK . Then

H(x) ≥ max{1,NKP}−vP(xOK)/(2d) = max{1, pd}−vP(xOK)/(2d).

In particular, if vP(xOK) < 0 we get H(x) ≥ √p. As H(x) = H(1/x) for any
nonzero x whatsoever, it suffices to show that the order of

√
pαOK at P is nonzero.

As p is inert in k the order of αOK at P is even. Hence the order of
√
pαOK at P

is odd. �

We can now prove Theorem 3. Clearly, we have

N(
√

Pkk,X) = 1 +
∑
p∈Pk
p≤X2

N(
√
pk∗, X)

=
∑
p∈Pk
p≤X2

2pd/2

pd + 1
Sk(1)X2d +O

(
X2d−1

p(d−1)/2
+Xd logX +Xd log p

)

=
∑
p∈Pk
p≤X2

2pd/2

pd + 1
Sk(1)X2d +O

∑
p∈Pk
p≤X2

X2d−1

p(d−1)/2

+O

∑
p∈Pk
p≤X2

Xd logX

 .

By the prime number theorem we have∑
p∈Pk
p≤X2

Xd logX � Xd+2.
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A straightforward calculation yields

∑
p∈Pk
p≤X2

X2d−1

p(d−1)/2
�


X2d−1 if d ≥ 4,

X5 log logX if d = 3,

X4 if d = 2.

To handle the first term let us start with the simpler case d ≥ 3. Then we have

∑
p∈Pk
p≤X2

2pd/2

pd + 1
Sk(1)X2d =

∑
p∈Pk

2pd/2

pd + 1
Sk(1)X2d +O

∑
p∈Pk
p>X2

2pd/2

pd + 1
Sk(1)X2d


=
∑
p∈Pk

2pd/2

pd + 1
Sk(1)X2d +O(X2d−1).

This finishes the proof of Theorem 3 for d ≥ 3.
Let us now assume d = 2. It remains to show that∑

p∈Pk
p≤X2

2p

p2 + 1
= log logX +O(1).

Clearly, we have ∑
p∈Pk
p≤X2

2p

p2 + 1
=
∑
p∈Pk
p≤X2

2

p
+O(1).

By an explicit version of Chebotarev’s density theorem (see, e.g., [LO77]) we know
that for T ≥ 3 (using Li(T ) = T/ log T +O(T/(log T )2))∑

p∈Pk
p≤T

1 =
T

2 log T
+O

(
T

(log T )2

)
.

Applying partial summation we get

∑
p∈Pk
p≤X2

2

p
=

X2∑
m=2

1

(m+ 1) logm
+O(1) = log logX +O(1).

This completes the proof of Theorem 3 for d = 2.

Appendix

We will now apply Theorem 5 to deduce the formula (1.8). We start by proving
our claim that N ′ is an adelic Lipschitz system whenever all the functions Nw of
N are norms. To this end we shall use the following simple observations.

Let f1, f2, f : Rq → R and F : [0, 1]q−1 → Rq be functions that satisfy a Lipschitz
condition with Lipschitz constant Lf1

, Lf2
, Lf and LF respectively. Then we have:

1. |f(F (t))− f(F (t′))| ≤ LfLF |t− t′| for all t, t′ ∈ [0, 1]q−1.
2. Suppose that f(F (t)) ≥ c > 0 for all t ∈ [0, 1]q−1 and let α ≤ 1. Then,
|f(F (t))α − f(F (t′))α| ≤ |α|cα−1LfLF |t − t′| for all t, t′ ∈ [0, 1]q−1. (We use
the convention that 00 = 1.)

3. Suppose that |f1(F (t))|, |f2(F (t))|, |f(F (t))|, |F (t)| ≤ C for all t ∈ [0, 1]q−1.
Then, for all t, t′ ∈ [0, 1]q−1,
(a) |f1(F (t))f2(F (t))− f1(F (t′))f2(F (t′))| ≤ C(Lf1

+ Lf2
)LF |t− t′|,

(b) |f(F (t))F (t)− f(F (t′))F (t′)| ≤ CLF (Lf + 1)|t− t′|.
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Here 1. is obvious, 2. follows from the mean value theorem and 1., and 3. (a)
and (b) are consequences of the identity fg − f ′g′ = (f − f ′)g + f ′(g − g′) and 1.
(note that the assumption |F (t)| ≤ C is needed only for (b)).

Lemma A1. Let N be an adelic Lipschitz system (of dimension n) on K and as-
sume that for every Archimedean place w of K the function Nw satisfies a Lipschitz
condition. Then N ′ = N ′(N , k) is an adelic Lipschitz system (of dimension n) on
k.

Proof. The conditions (i), (ii) and (iv) in Definition 5.1 are obviously satisfied. It
remains to prove (iii). Given an Archimedean place v of k, let ρ : [0, 1]dv(n+1)−1 →
Sdv(n+1)−1 be the (normalized) standard parameterization via polar coordinates of
the (dv(n+ 1)− 1)-dimensional unit sphere in kn+1

v . Then ρ is Lipschitz. The sub-
set of kn+1

v where Nv(z) = 1 is parameterized by the function ψ : [0, 1]dv(n+1)−1 →
kn+1
v , defined by ψ(t) := 1/Nv(ρ(t)) · ρ(t). Let us show that ψ satisfies a Lipschitz

condition.
For any Archimedean place w of K extending v, the function Nw is continuous

and nonzero on the compact set Sdv(n+1)−1, whence 1 �N Nw(ρ(t)) �N 1 on

[0, 1]dv(n+1)−1. Thus, Nw(ρ(t))−
dw

dv [K:k] is bounded, and by 2. satisfies a Lipschitz
condition. Hence, by 3. (a) also Nv(ρ(t))−1 is Lipschitz. By 3. (b), we conclude
that ψ satisfies a Lipschitz condition. �

Note that any norm ‖ · ‖ on Rq satisfies a Lipschitz condition. This follows from
the reverse triangle inequality |‖x‖ − ‖y‖| ≤ ‖x − y‖ and the equivalence of all
norms on Rq. Thus, if all the functions Nw are norms then Lemma A1 applies
and so N ′ = N ′(N , k) is an adelic Lipschitz system (of dimension n) on k. More
generally, let Bw := {z ∈ Kn+1

w : Nw(z) ≤ 1} be the compact star-shaped body
corresponding to Nw. Let ker(Bw) be the convex kernel of Bw, that is the set of all
z ∈ Bw such that for all z′ ∈ Bw the line segment [z, z′] is contained in Bw. Then
0 ∈ ker(Bw) and Bw is convex if and only if ker(Bw) = Bw. Moreover, [Bee75,
Lemma 1] tells us that Nw is Lipschitz whenever 0 is in the interior of ker(Bw).

Let us now show how the formula (1.8) follows from Theorem 5. We use the

adelic Lipschitz system N (of dimension 2) on K := Q(
√

2,
√

3,
√

5) defined by

Nw(z0, z1, z2) : = max{|z0|w, |z1|w, |z2|w, |
√

2z1 +
√

3z2√
5

|w},

for any place w of K. Hence all the Nw are norms so that, thanks to Lemma A1,
we can apply Theorem 5. With the notation from Section 6, we have NL(X) =
NN (P2(Q), X) +O(X2), as already mentioned in the introduction. Here the error
term accounts for the projective points of the form (0 : ω1 : ω2). With Theorem 5,
the only remaining task is to calculate gNQ .

Lemma A2. We have

gNQ =
1

31ζ(3)
(1 + 2 · 51/4 + 4 · 5−1/2).

Proof. For some tedious computations in K, we use the computer algebra system
Sage1. We use the same notation as in Section 6. Clearly, we can choose R = {Z}.
For any ω = (ω0, ω1, ω2) ∈ Q3, we have

iN (ω) = ω0OK + ω1OK + ω2OK +

√
2ω1 +

√
3ω2√

5
OK .

1http://www.sagemath.org

http://www.sagemath.org
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If OQ(ω) = Z then ω0OK + ω1OK + ω2OK = OK , so iN (ω) ⊇ OK . On the other

hand, we clearly have iN (ω) ⊆ (
√

5)−1OK . Thus, we can choose

SZ := {(
√

5)−1D : D |
√

5OK}.
Moreover, if ω ∈ ΛZ((

√
5)−1DA), for some nonzero ideal A of OK , then iN (ω) =

(
√

5)−1D1, for some nonzero ideal D1 |
√

5OK . In particular, DA | D1. This shows
that TZ,(

√
5)−1D is contained in the finite set

T := {A : A |
√

5OK}.
With (6.6), we obtain

(9.5) gNQ =
∑

D|
√
5OK

NK((
√

5)−1D)3/8
∑

A|
√
5OK

µK(A)Σ(AD),

where

Σ(B) :=

∞∑
n=1

µ(n)

det Λ((
√

5)−1B, nZ)
.

Let us evaluate this sum for any ideal B of OK dividing 5OK . Elementary manip-
ulations show that Λ((

√
5)−1B, nZ) is the sublattice of Z3 consisting of all

(9.6) ω = (ω0, ω1, ω2) ∈ (nZ ∩ (
√

5)−1B)3 such that
√

2ω1 +
√

3ω2 ∈ B.

We have 5OK = P2
1P

2
2, where

P1 := (5,
√

15−
√

10 +
√

6 + 1), P2 := (5,
√

15−
√

10 +
√

6− 1)

are distinct prime ideals of OK with inertia degrees equal to 2.
For B = OK , the first condition in (9.6) amounts to ω ∈ (nZ)3. Then the second

condition is always satisfied, and det Λ((
√

5)−1OK , nZ) = n3. Therefore,

(9.7) Σ(OK) =

∞∑
n=1

µ(n)

n3
=

1

ζ(3)
.

If B = P1, then the first condition in (9.6) is equivalent to ω ∈ (nZ)3. For

the second condition, we find that −(
√

3)−1
√

2 ≡ 3 mod P1, so this condition
is equivalent to ω2 = 3ω1 + a, for an a ∈ P1 ∩ nZ = lcm(5, n)Z. Therefore,

Λ((
√

5)−1P1, nZ) has the basis

{(n, 0, 0), (0, n, 3n), (0, 0, lcm(5, n))}
of determinant n2 lcm(5, n). A similar computation shows that −(

√
3)−1
√

2 ≡ 2
mod P2, so

{(n, 0, 0), (0, n, 2n), (0, 0, lcm(5, n))}
is a basis of Λ((

√
5)−1P2, nZ) of the same determinant. Thus,

(9.8) Σ(Pi) =

∞∑
n=1

µ(n)

n2 lcm(5, n)
=

1

ζ(3)

52 − 1

53 − 1
.

For B = P1P2 =
√

5OK , the first condition in (9.6) is again equivalent to

ω ∈ (nZ)3. The second condition is equivalent to ω2 ≡ −(
√

3)−1
√

2ω1 mod P1P2.
By the Chinese remainder theorem and what we have seen before, this is equivalent
to

ω2 ≡ 2ω1 mod 5 and ω2 ≡ 3ω1 mod 5,

so ω1 ≡ ω2 ≡ 0 mod 5. Thus, Λ((
√

5)−1P1P2, nZ) = nZ × (lcm(5, n)Z)2 has
determinant n lcm(5, n)2. We obtain

(9.9) Σ(P1P2) =

∞∑
n=1

µ(n)

n lcm(5, n)2
=

1

ζ(3)

5− 1

53 − 1
.



SCHANUEL’S THEOREM FOR HEIGHTS DEFINED VIA EXTENSION FIELDS 33

In the other cases, that is P2
1 | B or P2

2 | B, we have d((
√

5)−1B) = 5Z, so the
first condition in (9.6) is equivalent to ω ∈ (lcm(5, n)Z)3. In this case, the second

condition is always satisfied, so we obtain det Λ((
√

5)−1B, nZ) = lcm(5, n)3 and

(9.10) Σ(B) =

∞∑
n=1

µ(n)

lcm(5, n)3
= 0.

A simple computation shows that

NK((
√

5)−1OK)3/8 = 5−3/2, NK((
√

5)−1Pi)
3/8 = 5−3/4, NK(OK)3/8 = 1.

To prove the lemma, just substitute this and (9.7) – (9.10) in (9.5). �
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