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Abstract. We generalise M. M. Skriganov’s notion of (weak) admissibility for lat-

tices to include standard lattices occurring in Diophantine approximation and al-
gebraic number theory, and we prove estimates for the number of lattice points in

sets such as aligned boxes which, in certain cases, improve on Skriganov’s celebrated

counting results. We establish a criterion under which our error term is sharp and
we provide examples in dimensions 2 and 3 using continued fractions. We also es-

tablish a similar counting result for primitive lattice points, and apply the latter to

the classical problem of Diophantine approximation with primitive points as studied
by Chalk, Erdős and others. Finally, we use o-minimality to describe large classes of

sets to which our counting results apply.

1. Introduction

In this article we generalise Skriganov’s notion of (weak) admissibility for lattices to
include standard lattices occurring in Diophantine approximation and algebraic number
theory (e.g. ideal lattices), and we prove a sharp estimate for the number of lattice
points in sets such as aligned boxes. Our result applies when the lattice is weakly ad-
missible, whereas Skriganov’s result requires the dual lattice to be weakly admissible (in
his stronger sense). If both of them are weakly admissible then our error term is better
provided the lattice is not admissible and the box is sufficiently distorted, which will be
made precise later. Our error term also has a good dependence on the geometry of the
lattice which allows us to apply a Möbius inversion to get a similar estimate for primitive
lattice points. The motivation for this comes from classical results due to Chalk and
Erdős [2] as well as more recent work of Dani, Laurent, and Nogueira [3, 4] on inhomo-
geneous Diophantine approximation by primitive points. Finally, we use o-minimality, a
notion from model theory, to describe large classes of sets to which our counting results
apply.

Let S = (m,β) where m = (m1, . . . ,mn) ∈ Nn, β = (β1, . . . , βn) ∈ (0,∞)n, and
n ∈ N = {1, 2, 3, . . .}. We write x = (x1, . . . ,xn) (xi ∈ Rmi) for the elements in

E := Rm1 × · · · ×Rmn ,

and | · | will be used to denote the Euclidean norm. We set

N := dim E =

n∑
i=1

mi,

t :=

n∑
i=1

βi,
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and we will always assume that N > 1. We write

Nmβ(x) :=

n∏
i=1

|xi|βi

for the multiplicative β-norm on E. Let C ⊂ E be a coordinate-tuple subspace, i.e.,

C = {x ∈ E; xi = 0 (for all i ∈ I)}
where I ⊂ {1, . . . , n}. We fix such a pair (S, C), and for Γ ⊂ E and % > 0 we define the
quantities

ν(Γ, %) := inf{Nmβ(x)1/t; x ∈ Γ\C, |x| < %},
Nmβ(Γ) := lim

%→∞
ν(Γ, %).

As usual we always interpret inf ∅ =∞ and ∞ > x for all x ∈ R. The above quantities
in the special case when C = {0} and mi = βi = 1 (for all 1 ≤ i ≤ n) were introduced
by Skriganov in [9, 10]. By a lattice in RN we always mean a lattice of rank N .

Definition 1. Let Λ be a lattice in RN . We say Λ is weakly admissible for (S, C) if
ν(Λ, %) > 0 for all % > 0. We say Λ is admissible for (S, C) if Nmβ(Λ) > 0.

Note that weak admissibility for a lattice in RN depends only on the choice of C
whereas admissibility depends on C and β. Also notice that a lattice Λ in RN is weakly
admissible (or admissible) in the sense of Skriganov [10] if and only if Λ is weakly admis-
sible (or admissible) for (S, C) with C = {0} and mi = βi = 1 (for all 1 ≤ i ≤ n). Let
us give some examples to illustrate that our notion of weak admissibility captures new
interesting cases not covered by Skriganov’s notion of weak admissibility.

Example 1. Let Θ ∈ Matr×s(R) be a matrix with r rows and s columns and consider1

Λ =

[
Ir Θ
0 Is

]
Zr+s = {(p + Θq,q); (p,q) ∈ Zr × Zs}.(1.1)

We take n = 2, m1 = r, m2 = s and C = {(x1,x2); x2 = 0}. Then the lattice Λ is weakly
admissible for (S, C) (for every choice of β) if p+Θq 6= 0 for every q 6= 0. If β = (1, β)
then Λ is admissible for (S, C) if we have

|p + Θq||q|β ≥ cΛ(1.2)

for every (p,q) with q 6= 0 and some fixed cΛ > 0. The above lattice Λ naturally
arises when considering Diophantine approximations for the matrix Θ (cf. Corollary
1.2). Recall that the matrix Θ is called badly approximable if (1.2) holds true with β =
s/r. W. M. Schmidt [8] has shown that the Hausdorff dimension of the set of badly
approximable matrices is full, i.e., rs.

Another example comes from the Minkowski-embedding of, e.g., an ideal in a number
field.

Example 2. Suppose K is a number field with r real and s pairs of complex conjugate
embeddings. Let σ : K → Rr × Cs be the Minkowski-embedding and identify C in the
usual way with R2. Set n=r+s, C = {0}, mi = βi = 1 for 1 ≤ i ≤ r and mi = βi = 2 for
r+1 ≤ i ≤ r+s. Now let A ⊂ K be a free Z-module of rank N = r+2s. Then Λ = σA is
admissible in (S, C). In particular, this generalises the examples of Skriganov for totally
real number fields to arbitrary number fields K. Unlike in Skriganov’s setting we can
also consider cartesian products of such modules Aj by using the embedding σ : Kp →
Rpr ×Csp that sends a tuple α to (σ1(α), . . . , σr+s(α)). Now mi is p if σi is real and
2p otherwise while n and βi remain unchanged. Again we get that Λ = σ(A1 × · · · ×Ap)
is an admissible lattice in (S, C).

1Despite the row notation we treat the vectors as column vectors.
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Now we introduce the sets in which we count the lattice points. Essentially these
are the sets that can be transformed into “nice” sets by maps of the form φ(x) =

(θ1x1, . . . , θnxn) with θβ1

1 · · · θβnn = 1.
For Q = (Q1, . . . , Qn) ∈ (0,∞)n we consider the β-weighted geometric mean

Q =

(
n∏
i=1

Qβii

)1/t

,

and we assume throughout this note that

Qi ≤ Q (for all i /∈ I).(1.3)

We set

Qmax := max
1≤i≤n

Qi,

Qmin := min
1≤i≤n

Qi.

For κ > 0 and M ∈ N we introduce the family of sets

Fκ,M := {S ⊂ RN ; ∂(φ(S)) ∈ Lip(N,M, κ · diam(φ(S))) ∀φ ∈ GLN (R)}.

Here GLN (R) denotes the group of invertible N × N -matrices with real entries,
diam(·) denotes the diameter, ∂(·) denotes the topological boundary, and the notation
Lip-(·, ·, ·) is explained in Definition 2 Section 2.

It is an immediate consequence of [15, Theorem 2.6] that every bounded convex set
in RN lies in Fκ,M for κ = 16N5/2 and M = 1. We will also show (Proposition 7.1) that
if Z ⊂ Rd+N is definable in an o-minimal structure and each fiber ZT = {x; (T,x) ∈
Z} ⊂ RN is bounded then each fiber ZT lies in FκZ ,MZ

for certain constants κZ and MZ

depending only on Z but not on T . This result provides another rich source of interesting
examples, and might be of independent interest.

For all 1 ≤ i ≤ n let πi : E → Rmi be the projection defined by πi(x) = xi. We fix
values κ and M , and we assume throughout this article that ZQ ⊂ RN is such that for

all 1 ≤ i ≤ n
(1) ZQ ∈ Fκ,M ,
(2) πi(ZQ) ⊂ Byi(Qi) for some yi ∈ Rmi .

Here Byi(Qi) denotes the closed Euclidean ball in Rmi about yi of radius Qi. As is well
known (see, e.g., [11]) ∂(ZQ) ∈ Lip(N,M,L) implies that ZQ is measurable. For Γ ⊂ E

we introduce the quantities

λ1(Γ) := inf{|x|; x ∈ Γ\0},
and

µ(Γ, %) := min{λ1(Γ ∩ C), ν(Γ, %)}.

If µ(Γ, %) =∞ then we interpret 1/µ(Γ, %) as 0. Finally, we introduce the error term

EΛ(ZQ) :=

∣∣∣∣∣|ZQ ∩ Λ| −
VolZQ

det Λ

∣∣∣∣∣ .
Our first result is a sharp upper bound for EΛ(ZQ).

Theorem 1.1. Suppose Λ is a weakly admissible lattice for (S, C) and define c1 :=
M((1 + κ)N2N )N . Then we have

EΛ(ZQ) ≤ c1 inf
0<B≤Qmax

(
Q

µ(Λ, B)
+
Qmax
B

)N−1

.
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Considering suitable homogeneously expanding parallelepipeds it is clear that the
error term cannot be improved in this generality. However, the situation becomes more
interesting when we restrict the sets ZQ to aligned boxes.

Theorem 1.2. Suppose 2 ≤ n ≤ 3, mi = βi = 1 (1 ≤ i ≤ n) (hence N = n) and
C = {x; xn = 0}. Then there exists a lattice Λ, weakly admissible for (S, C), and a
sequence of aligned boxes ZQ = [−Q1, Q1]× · · · × [−Qn, Qn], increasingly distorted (i.e.,

Q/Qmax tends to zero), whose volume (2Q)N tends to infinity such that

EΛ(ZQ) ≥ cabs inf
0<B≤Qmax

(
Q

µ(Λ, B)
+
Qmax
B

)N−1

,

where cabs > 0 is an absolute constant.

Higher dimensional examples may require a better understanding of parametric ge-
ometry of numbers for multiple parameters.

Let us now assume that mi = βi = 1 (1 ≤ i ≤ n) and that C = {0}, and also
that Λ is unimodular. In this setting Skriganov [10, Theorem 6.1] proved error estimates
for homogeneously expanding aligned boxes (and more generally certain polyhedrons),
provided the dual lattice Λ⊥ (with respect to the standard inner product) is weakly
admissible. As shown in [12] his method also leads to results for arbitrarily aligned
boxes, again, provided Λ⊥ is weakly admissible, of the form2

EΛ(ZQ)�N
1

ν(Λ⊥, (Q/Qmin)∗)N
inf
%≥γN

(
Q
N−1

√
%

+
rN−1

ν(Λ⊥, 2rQ/Qmin)N

)
,(1.4)

where γN denotes the Hermite constant, r = N2 + N log(%/ν(Λ⊥, %Q/Qmin)), and
(Q/Qmin)∗ = max{Q/Qmin, γN}.

Now in general, even if Λ and Λ⊥ are both weakly admissible, there is no way to
bound ν(Λ, ·) in terms of ν(Λ⊥, ·). However, if ν(Λ, ·) = ν(Λ⊥, ·) then3 we can directly
compare our result with Skriganov’s. Using that Q/Qmin ≥ (Qmax/Q)1/(N−1) we find
the following crude lower bound for the right hand-side of (1.4)

ν(Λ, (Qmax/Q)1/(N−1))−2N .(1.5)

Choosing B = Qmax/Q we see that the error term in Theorem 1.1 is bounded from above
by

c1(2Q)N−1ν(Λ, Qmax/Q)−(N−1).(1.6)

In particular, if N = 2 then our error term is better whenever ν(Λ, Qmax/Q)−3 >
c1(VolZQ)1/2, so if the box is sufficiently distorted in terms of ν(Λ, ·) and the volume of

the box. (Also note that for ν(Λ, Qmax/Q)−1 = o(Q) as Q tends to infinity we still get
asymptotics.)

Another significant difference between our error term and Skriganov’s results con-
cerns the dependence on the lattice. If we replace Λ by kΛ then the error term in (1.4)
increases by a factor kN . (WE CAN’T DO THAT, Λ MUST BE UNIMODULAR! BUT
USE (1.5) AND (1.6) TO COMPARE!) On the other hand µ(kΛ, B) = kµ(Λ, B) and
hence our error term in Theorem 1.1 gets significantly smaller for kΛ. This improvement

2In the above setting our definition of ν(·, ·) is the N -th root of Skriganov’s and the one in [12].
3This identity of the ν(·, ·)-functions holds true if, e.g., Λ = AZN with a symplectic matrix A. In
particular, the identity holds for any unimodular lattice of rank 2. See [12] for this and more general

results.
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allows us to sieve for coprimality, and thus to prove asymptotics for the number of prim-
itive lattice points.

Let Λ be a lattice in RN . We say x ∈ Λ is primitive if x is not of the form ky for
some y ∈ Λ and some integer k > 1. We write

Λ∗ := {x ∈ Λ; x is primitive}.

To state our next result let T : [0,∞)→ [1,∞) be monotonic increasing and an upper
bound for the divisor function, i.e.,

T (k) ≥
∑
d|k

1

for all k ∈ N. Finally, ζ(·) denotes the Riemann zeta function.

Theorem 1.3. Suppose Λ is a weakly admissible lattice for (S, C). Then there exists a
constant c2 = c2(N,κ,M), depending only on N,κ,M , such that∣∣∣∣∣|ZQ ∩ Λ∗| −

VolZQ

ζ(N) det Λ

∣∣∣∣∣ ≤ c2
((

Q

µ
+ 1

)N−1

+

(
Q

µ
+ 1

)
T (H)

)
where

H = N2N+2(Q+ |φ(y)|)
(

1

µ
+

1

Q

)
,

µ = µ(Λ, Qmax), and |φ(y)| is the Euclidean norm of (Qy1/Q1, . . . , Qyn/Qn) ∈ E.

Note that for every a > 2 there is a b = b(a) ≥ exp(exp(1)) such that for x ≥ b we

can take T (x) = a
log x

log log x . We use Q + |φ(y)| ≤ Q(1 + |y|/Qmin) and 1/µ + 1/Q ≤ 2/µ
to obtain the following corollary.

Corollary 1.1. Suppose Λ is a weakly admissible lattice for (S, C) and a > 2. Then
there exists a constant c3 = c3(a,N, κ,M, |y|), depending only on a,N, κ,M and |y| such

that for all Q ≥ bµ we have∣∣∣∣∣|ZQ ∩ Λ∗| −
VolZQ

ζ(N) det Λ

∣∣∣∣∣ ≤ c3
((

Q

µ

)N−1

+ a
log(ηQ/µ)

log log(ηQ/µ)

(
Q

µ

))
where µ = µ(Λ, Qmax), and η = 1 + |y|/Qmin.

Next we consider applications to Diophantine approximation. Let Θ ∈ Matr×s(R)
be a matrix with r rows and s columns and suppose that ϕ : [1,∞) → (0, 1] is a non-
increasing function such that

|p + Θq||q|β ≥ ϕ(|q|)(1.7)

for every (p,q) with q 6= 0. Let y be in Rr, Q ≥ 1 and let 0 < ε ≤ 1. We consider the
system

p + Θq− y ∈ [0, ε]r(1.8)

q ∈ [0, Q]s.(1.9)

Let N∗Θ,y(ε,Q) be the number of (p,q) ∈ Zr+s that satisfy the above system and have

coprime coordinates, i.e., gcd(p1, . . . , pr, q1, . . . , qs) = 1. In the one-dimensional case
r = s = 1 Chalk and Erdős [2] proved in 1959 that if Θ is an irrational number and
ε = ε(q) = (1/q)(log q/ log log q)2 then (1.8) has infinitely many coprime solutions, i.e.,
N∗Θ,y(ε,Q) is unbounded as Q tends to infinity. No improvements or generalisations to
higher dimensions have been obtained since.
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The following corollary follows straightforwardly from Corollary 1.1, and we leave the
proof to the reader. We suppose ε = ε(Q) is a function of Q, and that ε · Qβ tends to
infinity as Q tends to infinity.

Corollary 1.2. Suppose a > 2. Then, as Q tends to infinity, we have

N∗Θ,y(ε,Q) =
εrQs

ζ(r + s)
+O(ur+s−1 + ua

log δ
log log δ )

where u =
(
εQβ

ϕ(Q)

)1/(1+β)

, and δ =

(
1

ϕ(Q)

(
Q
ε

)β)1/(1+β)

.

Corollary 1.2 also implies new results on how quickly ε can decay so that (1.8) still
has infinitely many coprime solutions. As an example let us suppose that Θ is a badly
approximable matrix so that in (1.7) we can choose β = s/r and ϕ(·) to be constant.
A straightforward computation shows that if a > 2(r+s)/(r(r+s−1)) and ε = ε(Q) =
Q−s/ralogQ/ log logQ then N∗Θ,y(ε,Q) tends to infinity as Q does. In particular, if ε =

ε(|q|∞) = |q|−s/r∞ alog |q|∞/ log log |q|∞ then (1.8) has infinitely many coprime solutions4.
To the best of the author’s knowledge this is the first such result apart from Erdős and
Chalk’s result in dimension 1.

A similar simple calculation shows that Corollary 1.2 in conjunction with the clas-
sical Khintchine Groshev Theorem implies that the same holds true not only for badly
approximable matrices Θ but for almost5 every Θ ∈ Matr×s(R).

Finally, we mention a connection to a question of Dani, Laurent and Nogueira. Sup-
pose ε : [1,∞) → (0, 1] and Qs−1ε(Q)r is non-increasing. Dani, Laurent and Nogueira
conjecture6 that if

∑
j∈N js−1ε(j)r = ∞ then for almost every Θ ∈ Matr×s(R) there

exist infinitely many coprime solutions of (1.8), where again we interpret ε = ε(|q|∞) as
a function evaluated at |q|∞. We cannot prove this conjecture, but as mentioned before
our result shows at least that we have infinitely many such solutions for almost every
Θ if ε(Q) � Q−s/ralogQ/ log logQ and, a > 2(r+s)/(r(r+s−1)). DOUBLECHECK ABOVE
CLAIMS!!!

2. Counting lattice points

Let D ≥ 2 be an integer. Let Λ be a lattice of rank D in RD. Recall that BP (R)
denotes the closed Euclidean ball about P of radius R. We define the successive minima
λ1(Λ), . . . , λD(Λ) of Λ as the successive minima in the sense of Minkowski with respect
to the Euclidean unit ball. That is

λi = inf{λ;B0(λ) ∩ Λ contains i linearly independent vectors}.

Definition 2. Let M be a positive integers and let L be a non-negative real number. We
say that a set S is in Lip(D,M,L) if S is a subset of RD, and if there are M maps
φ1, . . . , φM : [0, 1]D−1 −→ RD satisfying a Lipschitz condition

|φi(x)− φi(y)| ≤ L|x− y| for x,y ∈ [0, 1]D−1, i = 1, . . . ,M

such that S is covered by the images of the maps φi.

For any set S we write

1∗(S) =

{
1 if S 6= ∅,
0 if S = ∅.

We will apply the following basic counting principle.

4Here | · |∞ denotes the maximum norm.
5With respect to the Lebesgue measure.
6Their conjecture is more general. In fact, as kindly pointed out by Michel Laurent, the case s > 1 of

this special case of their conjecture follows from a result of Khintchine.
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Lemma 2.1. Let Λ be a lattice in RD with successive minima λ1, . . . , λD. Let S be a
set in RD such that the boundary ∂S of S is in Lip(D,M,L), and suppose S ⊂ BP (L)
for some point P . Then S is measurable, and moreover,∣∣∣∣|S ∩ Λ| − VolS

det Λ

∣∣∣∣ ≤ clp(D)M

((
L

λ1

)D−1

+ 1∗(S ∩ Λ)

)
,

where clp(D) = D3D2/2.

Proof. By [14, Theorem 5.4] the set S is measurable, and moreover,∣∣∣∣|S ∩ Λ| − VolS

det Λ

∣∣∣∣ ≤ D3D2/2M max
1≤j<D

{
1,

Lj

λ1 · · ·λj

}
.(2.1)

First suppose L ≥ λ1. Then the lemma follows immediately from (2.1). Next we assume
L < λ1. We distinguish two subcases. First suppose S ∩ Λ 6= ∅. Then

max
1≤j<D

{
1,

Lj

λ1 · · ·λj

}
= 1 = 1∗(S ∩ Λ) ≤

(
L

λ1

)D−1

+ 1∗(S ∩ Λ).

Now suppose S ∩ Λ = ∅. As L < λ1 we get, using Minkowski’s second Theorem,∣∣∣∣|S ∩ Λ| − VolS

det Λ

∣∣∣∣ =
VolS

det Λ
≤ (2L)D

λ1 · · ·λD
≤ 2D

(
L

λ1

)D−1

.

This proves the lemma. �

3. Proof of Theorem 1.1

Let θi = Q/Qi (1 ≤ i ≤ n), and let φ be the automorphism of E defined by

φ(x) := (θ1x1, . . . , θnxn).

Set

θmin := min
1≤i≤n

θi = Q/Qmax.

Note that by (1.3) we have

θi ≥ 1 (for all i /∈ I).(3.1)

Moreover,
n∏
i=1

θβii = 1,

and hence,

Nmβ(φx) = Nmβ(x).(3.2)

Lemma 3.1. We have ∂φ(ZQ) ∈ Lip(N,M,L) for L = 2n1/2κQ.

Proof. We have

φ(ZQ) ⊂ φ(By1
(Q1)× · · · ×Byn(Qn)) = Bθ1y1

(Q)× · · · ×Bθnyn(Q),

and hence, φ(ZQ) ⊂ Bφy(n1/2Q). As ZQ ∈ Fκ,M the claim follows. �

Lemma 3.2. The set ZQ is measurable and∣∣∣∣∣|ZQ ∩ Λ| −
VolZQ

det Λ

∣∣∣∣∣ ≤ c4
((

Q

λ1(φΛ)

)N−1

+ 1∗(φZQ ∩ φΛ)

)
where c4 = (1 + 2n1/2κ)N−1Mclp(N).
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Proof. Since |ZQ ∩ Λ| = |φZQ ∩ φΛ| and VolZQ/det Λ = VolφZQ/detφΛ, this follows

immediately from Lemma 2.1 and Lemma 3.1. �

Lemma 3.3. Let B > 0. Then we have

λ1(φΛ) ≥ min{λ1(Λ ∩ CI), ν(Λ, B), θminB}.

Proof. By (3.1) we have θi ≥ 1 (for all i /∈ I). Moreover, if x ∈ Λ ∩ CI then xi = 0 (for
all i ∈ I), and thus

|φ(x)|2 =
∑

1≤i≤n
i/∈I

|θixi|2 ≥
∑

1≤i≤n
i/∈I

|xi|2 = |x|2.

Hence, if x ∈ Λ ∩ CI and x 6= 0 then |φ(x)| ≥ λ1(Λ ∩ CI).
Now suppose that x ∈ Λ\CI . If z is an arbitrary point in E then, by the weighted

arithmetic geometric mean inequality, we have

|z|2 =

n∑
i=1

|zi|2 ≥
1

maxi βi

n∑
i=1

βi|zi|2 ≥
t

maxi βi

(
n∏
i=1

|zi|2βi
) 1

t

≥ Nmβ(z)2/t,

and thus

|z| ≥ Nmβ(z)1/t.(3.3)

Using (3.3) and (3.2) we conclude that

|φ(x)| ≥ Nmβ(φx)1/t = Nmβ(x)1/t.

First suppose that |x| < B. Then we have by definition of ν(·, ·)

Nmβ(x)1/t ≥ ν(Λ, B),

and hence |φ(x)| ≥ ν(Λ, B). Now suppose |x| ≥ B. Then we have

|φ(x)| = θmin|(θ1x1/θmin, . . . , θnxn/θmin)| ≥ θmin|(x1, . . . ,xn)| = θmin|x| ≥ θminB.

This proves the lemma. �

We can now easily finish the proof of Theorem 1.1. Since, θminQmax = Q we conclude
λ1(φΛ) ≥ min{µ(Λ, B), BQ/Qmax}. Thus, we have

Q

λ1(φΛ)
≤ Q

µ(Λ, B)
+
Qmax
B

.(3.4)

The latter in conjunction with Lemma 3.2 and the fact c4+1 = (1+2n1/2κ)N−1MN3N2/2+
1 ≤M((1 + κ)N2N )N = c1 proves the theorem.

4. Preparations for the Möbius inversion

Recall that T : [0,∞) → [1,∞) is a monotonic increasing function that is an upper
bound for the divisor function, i.e., T (k) ≥

∑
d|k 1 for all k ∈ N. In this section D is

a positive integer. For an endomorphism Ψ of RD we write ‖Ψ‖ for the (Euclidean)
operator norm.

Lemma 4.1. Let Λ be a lattice in RD and let Ψ be in GLD(R) with ΨZD = Λ. Then

|{k ∈ N;BP (R)\{0} ∩ kΛ 6= ∅}| ≤ T ((R+ |P |)‖Ψ−1‖)(2R‖Ψ−1‖+ 1).
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Proof. First assume Ψ = id so that Λ = ZD. Suppose v = (a1, . . . , aD) ∈ ZD is non-zero,
kv ∈ BP (R) and P = (x1, . . . , xD). Then kai lies in [xi − R, xi + R] for 1 ≤ i ≤ D.
As v 6= 0 there exists an i with ai 6= 0. We conclude that k is a divisor of some non-
zero integer in [xi − R, xi + R]. There are at most 2R + 1 integers in this interval,
each of which of modulus at most R + |P |. Hence the number of possibilities for k is
≤ T (R+ |P |)(2R+ 1). This proves the lemma for Ψ = id. Next note that

|BP (R)\{0} ∩ kΛ| = |Ψ−1BP (R)\{0} ∩ kZD|.
Hence, the general case follows from the case Ψ = id upon noticing Ψ−1BP (R) ⊂
BΨ−1(P )(R‖Ψ−1‖), and |Ψ−1(P )| ≤ ‖Ψ−1‖|P |. �

Next we estimate the operator norm ‖Ψ−1‖ for a suitable choice of Ψ.

Lemma 4.2. Let Λ be a lattice in RD. There exists Ψ ∈ GLD(R) with ΨZD = Λ and

‖Ψ−1‖ ≤ con(D)

λ1
,

where con(D) = D2D+1.

Proof. Any lattice Λ in RD has a basis v1, . . . , vD with |v1|···|vD|
| det[v1...vD]| ≤ D

2D, see, e.g., [14,

Lemma 4.4]. Let Ψ be the map that sends the canonical basis e1, . . . , en to v1, . . . , vn.
Now suppose Ψ−1 sends ei to (%1, . . . , %n) then by Cramer’s rule

|%j | =
∣∣∣∣ det[v1 . . . ei . . . vD]

det[v1 . . . vj . . . vD]

∣∣∣∣ ≤ |det[v1 . . . ei . . . vD]|
|v1| · · · |vj | · · · |vD|

D2D.

Now we apply Hadamard’s inequality to obtain

|det[v1 . . . ei . . . vD]|
|v1| · · · |vj | · · · |vD|

≤ |v1| · · · |ej | · · · |vD|
|v1| · · · |vi| · · · |vD|

=
1

|vi|
≤ 1

λi
.

Next we use that for aD×D matrix [aij ] with real entries we have ‖[aij ]‖ ≤
√
Dmaxij |aij |,

and this proves the lemma. �

We combine the previous two lemmas.

Lemma 4.3. Let Λ be a lattice in RD, and let λ1 = λ1(Λ). Then
∞∑
k=1

1∗(BP (R)\{0} ∩ kΛ) ≤ T
(
con(D)

(
R+ |P |
λ1

))(
2con(D)R

λ1
+ 1

)
.

Proof. Note that
∑∞
k=1 1∗(BP (R)\{0} ∩ kΛ) = |{k ∈ N;BP (R)\{0} ∩ kΛ 6= ∅}|. Hence,

the lemma follows immediately from Lemma 4.1 and Lemma 4.2. �

5. Proof of Theorem 1.3

Set

R := n1/2Q.

Lemma 5.1. Let Z∗Q = ZQ\{0}. Then∣∣∣∣∣|Z∗Q ∩ Λ| −
VolZQ

det Λ

∣∣∣∣∣ ≤ c5
((

Q

λ1(φΛ)

)N−1

+ 1∗(Bφ(y)(R)\{0} ∩ φΛ)

)
where c5 = (1 + 2n1/2κ)N−1(M + 1)clp(N).

Proof. Lemma 3.1 implies that ∂Z∗Q ∈ Lip(N,M + 1, L) with L = 2n1/2κQ. As noted in

the proof of the latter lemma we have φ(Z∗Q) ⊂ Bφy(R)\{0}. We conclude as in Lemma

3.2. �
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For x ∈ Λ\0 we define gcd(x) := d if x = dx′ for some x′ ∈ Λ but x 6= kx′ for all
integers k > d and all x′ ∈ Λ. (An equivalent definition is gcd(Az) := gcd(z) where
z ∈ ZN , gcd(z) := gcd(z1, . . . , zN ), and Λ = AZN .) Next we define

F (d) = {x ∈ Λ ∩ Z∗Q; gcd(x) = d}.

In particular, Λ∗ ∩ ZQ = F (1). Then for k ∈ N we have the disjoint union⋃
k|d

F (d) = kΛ ∩ Z∗Q.

If x = kx′ lies in kΛ ∩ Z∗Q then kφx′ lies in kφΛ ∩Bφ(y)(R), and hence

k ≤
R+ |φ(y)|
λ1(φΛ)

≤
R+ |φ(y)|
µ(Λ, Qmax)

+
R+ |φ(y)|

Q
=: G

where for the second inequality we have applied Lemma 3.3. We use the Möbius function
µ(·) and the Möbius inversion formula to get

|Λ∗ ∩ ZQ| = |F (1)| =
∞∑
k=1

µ(k)
∑
d
k|d

|F (d)| =
[G]∑
k=1

µ(k)
∑
d
k|d

|F (d)| =
[G]∑
k=1

µ(k)|kΛ ∩ Z∗Q|.

For the rest of this section we will write g � h to mean there exists a constant c =
c(N,M, κ) such that g ≤ ch. Applying Lemma 5.1 with Λ replaced by kΛ yields∣∣∣∣∣|ZQ ∩ Λ∗| −

VolZQ

ζ(N) det Λ

∣∣∣∣∣�
[G]∑
k=1

(
Q

kλ1(φΛ)

)N−1

+

[G]∑
k=1

1∗(Bφ(y)(R)\{0} ∩ kφΛ) +
∑
k>G

VolZQ

kN det Λ
.

First we note that∑
k>G

k−N ≤
∑

k≥max{G,1}

k−N � max{G, 1}1−N ≤ max{ R

λ1(φΛ)
, 1}1−N ,

and moreover,

VolZQ

det Λ
=

VolφZQ

detφΛ
≤

VolB0(R)

detφΛ
� RN

λ1(φΛ)N
.

Combining both with (3.4) yields∑
k>G

VolZQ

kN det Λ
� R

λ1(φΛ)
� Q

λ1(φΛ)
≤ Q

µ(Λ, Qmax)
+ 1.

Next we note that by Lemma 4.3

[G]∑
k=1

1∗(Bφ(y)(R)\{0} ∩ kφΛ) ≤ T
(
con(N)

R+ |φ(y)|
λ1(φ(Λ))

)(
2con(N)R

λ1(φ(Λ))
+ 1

)
.

Moreover, (
2con(N)R

λ1(φ(Λ))
+ 1

)
� Q

µ(Λ, Qmax)
+ 1,

and

R+ |φ(y)|
λ1(φ(Λ))

≤
R+ |φ(y)|
µ(Λ, Qmax)

+
R+ |φ(y)|

Q
= G.
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Since con(N)G < H we conclude that

[G]∑
k=1

1∗(Bφ(y)(R)\{0} ∩ kφΛ)� T (H)

(
Q

µ(Λ, Qmax)
+ 1

)
.

Finally,

[G]∑
k=1

(
Q

kλ1(φΛ)

)N−1

�
(

Q

µ(Λ, Qmax)
+ 1

)N−1 [G]∑
k=1

k1−N �
(

Q

µ(Λ, Qmax)
+ 1

)N−1

L∗,

where

L∗ =

{
max{log(G), 1} if N = 2,

1 if N > 2.

If N > 2 then L∗ = 1 and we are done. So suppose N = 2. Hence con(N) = 32.
By assumption T (x) ≥ 1 so that L∗ ≤ T (con(N)G) for G ≤ exp(1). Now suppose
G > exp(1). Since T is monotonic and 2[log2[32G]] ≤ 32G we have T (32G) ≥ [log2[32G]]+
1 ≥ log2(32G− 1) ≥ logG. Thus, L∗ ≤ T (con(N)G) ≤ T (H). This finishes the proof.

6. Lower bounds for the error term

The main goal of this section is to prove Theorem 1.2. Throughout this section we
assume that mi = βi = 1 (1 ≤ i ≤ n), so that N = n = t, and that Λ is weakly
admissible for (S, C) but not admissible for (S, C). To simplify the notation we write
Nm(·) := Nmβ(·) and ν(·) := ν(Λ, ·). After scaling we can assume that det Λ = 1. Let

k ≥ 1 and {xj}∞j=1 = {(xj1, . . . , xjn)}∞j=1 be a sequence of pairwise distinct elements in
Λ\C with

Nm(xj) ≤ kν(|xj |)n.

We define

Nj := aν(|xj |)−n,
ZQj

:= NjBxj
,

cj := λn−1(Λ, Bxj
),

where a > 0 is a constant which will be specified later, Bxj
denotes the box

Bxj
:= [−|xj1|, |xj1|]× · · · × [−|xjn|, |xjn|]

and λj(Λ, Bxj
) are the corresponding successive minima. For 1 ≤ i ≤ n we choose the

minimal eligible values Qi = Nj |xji| for the set ZQj
, so that7

Q ≤ (ak)
1
nN

n−1
n

j .(6.1)

Note that Nj tends to infinity since Λ is not admissible. Thus Q/Qmax tends to zero.
Once we have also specified the coordinate-tuple subspace C we also want that our sets
ZQj

satisfy the condition (1.3).

Let v1, . . . , vn−1 be linearly independent lattice points in λn−1(Λ, Bxj
)Bxj

. Then the

lattice points
∑n−1
l=1 mlvl with −Nj/(cjn) ≤ ml ≤ Nj/(cjn) are all distinct and lie all in

ZQj
. Since 2[Nj/(cjn)] + 1 ≥ Nj/(cjn), we conclude that

|ZQj
∩ Λ| −VolZQj

≥ (Nj/(cjn))n−1 − 2nakNn−1
j .

7To simplify the notation we suppress the dependence on j.
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We now make the crucial assumption that the n−1-th successive minimum cj is uniformly
bounded8 in j, i.e., there exists a constant cΛ ≥ 1 such that

cj ≤ cΛ(6.2)

for all j. Taking a := 1/(4k(2cΛn)n−1) we get

EΛ(ZQj
) ≥ |ZQj

∩ Λ| −VolZQj
≥ ((cΛn)1−n − 2nak)Nn−1

j �cΛ,n N
n−1
j .(6.3)

Next we prove a general criterion for Λ under which we have

|ZQj
∩ Λ| −VolZQj

≥ c inf
0<B≤Qmax

(
Q

µ(Λ, B)
+
Qmax
B

)N−1

(6.4)

with a certain constant c > 0.

Proposition 6.1. Suppose that the condition (6.2) and

ν(|xj |/ν(|xj |)n)� ν(|xj |)(6.5)

hold true. Then there exists c = c(k, cΛ, n) > 0 such that (6.4) holds true for all j large
enough.

Proof. We have Qmax ≤ Nj |xj |, and so ignoring the first few members of the sequence
xj , we can assume that µ(Λ, Qmax) ≥ ν(Nj |xj |) = ν(a|xj |/ν(|xj |)n)� ν(|xj |). Hence,

inf
0<B≤Qmax

(
Q

µ(Λ, B)
+
Qmax
B

)
≤
(

Q

µ(Λ, Qmax)
+ 1

)
�
(

Q

ν(|xj |)
+ 1

)
�k Nj .

This, in conjunction with (6.3), shows that (6.4) holds true. �

We give an example with n = 2 and C = {x; x2 = 0}. Let α be an irrational real
number, and consider the lattice Λ given by the vectors (p− qα, q) with p, q ∈ Z. Then
Λ is weakly admissible for (S, C). To choose an appropriate α we consider its continued
fraction expansion α = [a0, a1, a2, . . .]. Using the recurrence relation qj+1 = aj+1qj+qj−1

for the denominator qj of the j-th convergent pj/qj (in lowest terms) we can define α by
setting a0 = a1 = 1 (so that q0 = q1 = 1) and aj+1 = [log qj ] + 1. A very crude estimate
yields aj+log aj−1 ≤ aj+1 ≤ 3aj . Put xj = (pj−qjα, qj) ∈ Λ\C so that |xj | > |xj−1|, at
least for j large enough. From the theory of continued fractions we know that for x ∈ Λ\C
the inequality Nm(x) < 1/2 implies that x = cxj for some non-zero integer c and j ∈ N.

We conclude that for all sufficiently large % we have ν(%)2 = Nm(xj) for some j. Also
by the theory of continued fractions we know that 1/(aj+1 + 2) < Nm(xj) < 1/aj+1.

Since aj > aj−1 + 2 we conclude Nm(xj−1) < Nm(xj−2) and thus Nm(xj−1) = ν(|xj |)2

for j large enough; so we can take k = 1. We also easily find that |xj |/ν(|xj |)2 ≤ |xj+1|
for j large enough. It is now straightforward to verify (6.5). Moreover, for j large
enough, (1.3) holds true and so ZQj

is an eligible set. Since n = 2 we automatically

have (6.2) with cΛ = 1. Hence we can apply Proposition 6.1. Finally, we note that
VolZQj

= 4N2
j Nm(xj) = (2a)2Nm(xj−1)−2Nm(xj) ≥ 2−12a2

j/(aj+1 + 2) which tends to

infinity.
We note that the previous example proves the case n = 2 of Theorem 1.2. Next

we construct a lattice Λ in dimension n = 3 (and hence N = 3), weakly admissible for
(S, C) with C = {x; x3 = 0}, for which (6.4) holds true. This example does not rely on
Proposition 6.1. Let α = [a0, a1, a2, . . .] be a badly approximable real number, so that
the partial quotients ai are bounded. We set aM = max ai, and we consider the lattice

Λ = {(p1 − qα, p2 − 2qα, q); p1, p2, q ∈ Z}.(6.6)

8Note that λ1(Λ, Bxj ) ≤ 1 by definition of the sequence xj . On the other hand VolBxj tends to zero,

so that by Minkowski’s second Theorem λn(Λ, Bxj )→∞ as j tends to infinity.
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Proposition 6.2. Let Λ be given by (6.6). Then there exists c = c(aM ) > 0 depending
only on aM such that (6.4) holds true for all j large enough.

Proof. In this proof we write h� g to mean h ≤ cg for a constant c = c(aM ) depending
only on aM . First we note that

Nm(x)� |x|−1

for every x ∈ Λ\C. Hence,

ν(%)� %−1/3.(6.7)

Now suppose pj/qj is the j-th convergent of α, and put xj = (pj − qjα, 2pj − 2qjα, qj) ∈
Λ\C. Then, for j large enough, (1.3) holds true, and so ZQj

is an eligible set. Since

Nm(xj)� |xj |−1,

we also conclude that there exists k = k(aM ) ≥ 1 such that

Nm(xj) ≤ kν(|xj |)3.

Since qj+1 = aj+1qj+qj−1 we get qj+1 � qj and, by GIVE REFERENCE (FOR MAT412
THM.3), |pj+1 − qj+1α| < |pj − qjα|. Furthermore, (pj , qj) and (pj+1, qj+1) are linearly
independent, and thus xj and xj+1 are linearly independent. Hence, we conclude

λ2(Λ, Bxj
)� 1,

and thus, by virtue of (6.3), we get EΛ(ZQj
)� N2

j . Moreover, we have

|xj−1| < |xj | � |xj−1|(6.8)

and thus

ν(|xj |) ≤ Nm(xj−1)1/3 � |xj−1|−1/3 � |xj |−1/3.(6.9)

Combining (6.7), (6.8) and (6.9) implies that

%−1/3 � ν(%)� %−1/3.

Therefore, we have

Nj � ν(|xj |)−3 � |xj | � qj ≤ |xj | � ν(|xj |)−3 � Nj .

Thus, N2
j � Qmax = Njqj � N2

j , and due to (6.1), Q� N
2/3
j . Hence, with B = Nj we

have

Q

ν(B)
� Qmax

B
,

and thus for all j large enough

inf
0<B≤Qmax

(
Q

µ(Λ, B)
+
Qmax
B

)2

�
(
Qmax
B

)2

� N2
j � EΛ(ZQj

).

Hence, we have shown that (6.4) holds true. Finally, we observe that VolZQj
=

8N3
j Nm(xj)� N2

j which tends to infinity. �
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7. Fκ,M - Families via o-minimality

In this section let d ≥ 1 and D ≥ 2 both be integers. For Z ⊂ Rd+D and T ∈ Rd we
write ZT = {x ∈ RD; (T, x) ∈ Z} and call this the fiber of Z above T . For the convenience
of the reader we quickly recall the definition of an o-minimal structure following [5]. For
more details we refer to [16, 5] and [13].

Definition 3. A structure (over R) is a sequence S = (Sn)n∈N of families of subsets in
Rn such that for each n:

(1) Sn is a boolean algebra of subsets of Rn (under the usual set-theoretic operations).
(2) Sn contains every semi-algebraic subset of Rn.
(3) If A ∈ Sn and B ∈ Sm then A×B ∈ Sn+m.
(4) If π : Rn+m → Rn is the projection map onto the first n coordinates and A ∈
Sn+m then π(A) ∈ Sn.

An o-minimal structure (over R) is a structure (over R) that additionally satisfies:

(5) The boundary of every sets in S1 is finite.

The archetypical example of an o-minmal structure is the family of all semialgebraic
sets.

Following the usual convention, we say a set A is definable (in S) if it lies in some
Sn. A map f : A → B is called definable if its graph Γ(f) := {(x, f(x));x ∈ A} is a
definable set.

Proposition 7.1. Suppose Z ⊂ Rd+D is definable in an o-minimal structure over R,
and assume further that all fibers ZT are bounded sets. Then there exist constants κZ and
MZ depending only on Z (but independent of T ) such that the fibers ZT lie in FκZ ,MZ

for all T ∈ Rd.

Suppose the set Z is defined by the inequalities

f1(T1, . . . , Td, x1, . . . , xD) ≤ 0, . . . , fk(T1, . . . , Td, x1, . . . , xD) ≤ 0,(7.1)

where the fi are certain real valued functions on RD+d. If all these functions fi are defin-
able in a common o-minmal structure then we can apply Proposition 7.1. This happens
for instance if the fi are restricted analytic functions9 or polynomials in z1, . . . , zd+D and
each zi ∈ {xi, exp(xi)}. For more details and examples we refer to [16, 6, 7].

For the proof of Proposition 7.1 we shall need the following lemma. We are grateful
to Fabrizio Barroero for alerting us to Pila and Wilkies Reparametrization Lemma for
definable families and its relevance for the lemma.

Lemma 7.1. Suppose Z ⊂ Rd+D is definable in an o-minimal structure over R, and
assume further that all fibers ZT are bounded sets. Then there exist constants κZ and
MZ depending only on Z such that the boundary ∂ZT lies in Lip(D,MZ , κZ · diam(ZT ))
for every T ∈ Rd.

Proof. First note that if |ZT | ≤ 1 then ∂ZT lies in Lip(D, 1, 0). Hence, it suffices to
prove the claim for those T with |ZT | ≥ 2. By replacing Z with the definable set
{(T, x) ∈ Z; (∃x, y ∈ ZT )(x 6= y)} we can assume that |ZT | ≥ 2 for all T ∈ π(Z) where
π is the projection to the first d coordinates. We use the existence of definable Skolem
functions. By [13, Ch.6, (1.2) Proposition] there exists a definable map f : π(Z) → Rd

whose graph Γ(f) ⊂ Z. The proof of said (1.2) Proposition actually shows that there
is an algorithmic way to construct the Skolem function f. We will use the fact that this
choice of f is determined by Z and π and hence can be seen as part of the data of Z.

9By a restricted analytic function we mean a real valued function on Rn, which is zero outside of [−1, 1]n,

and is the restriction to [−1, 1]n of a function, which is real analytic on an open neighborhood of [−1, 1]n.
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Now we consider the set Z ′ = {(T, y); (T, x) ∈ Z, y = x − f(T )}. This set is again
definable and each non-empty fiber contains the origin, i.e., 0 ∈ Z ′T for all T ∈ π(Z).
Next we scale the fibers and translate by the point y0 = (−1/2)(1, . . . , 1) ∈ RD to get
a new definable set whose fibers all lie in (0, 1)D. We put Z ′′ = {(T, z); (T, y) ∈ Z ′, z =
(3 ·diam(Z ′T ))−1y−y0} (recall that diam(Z ′T ) = diam(ZT ) > 0 since ZT has at least two
points). We note that the graph of the function T → diam(ZT ) from π(Z) to R is given
by

{(T, t) ∈ π(Z)×R;φ(T, t) ∧ ¬((∃u ∈ R)(φ(T, u) ∧ u < t)}
where φ(T, t) stands for (∀x, y ∈ ZT )(|x − y| ≤ t). This shows that the aforementioned
map is definable and hence, so is Z ′′. Also we have Z ′′T ⊂ (0, 1)D for all T . By [1,
Lemma 3.15] the set Z ′′′ = {(T,w);w ∈ ∂Z ′′T } is also definable. The fibers of a definable
set are again definable (cf. [1, Lemma 3.1]), and hence by [13, Ch.4, (1.10) Corollary]
we have dim ∂Z ′′T ≤ D − 1. From Pila and Wilkie’s Reparameterization Lemma for
definable families [5, 5.2. Corollary] we conclude that ∂Z ′′T lies in Lip(D,MZ′′′ , κZ′′′)
for all T ∈ Rd with certain constants κZ′′′ and MZ′′′ . Rescaling and retranslating gives
∂ZT ∈ Lip(D,MZ′′′ , κZ′′′ · diam(ZT )). Finally, we note that Z ′′′ depends only on Z and
f which itself can be seen as part of the data of Z, so that the constants κZ′′′ and MZ′′′

may be chosen to depend only on Z. This completes the proof of the lemma. �

We can now prove Proposition 7.1. Consider the set

Z ′′′′ := {(ϕ, T, x);ϕ ∈ GLD(R), x ∈ ϕ(ZT )}.
This set is definable in the given o-minimal structure, and we have Z ′′′′(ϕ,T ) = ϕ(ZT ).

Applying Lemma 7.1 to the fibers Z ′′′′(ϕ,T ) we conclude that there exist constants κZ′′′′

and MZ′′′′ such that ∂ϕ(ZT ) lies in Lip(D,MZ′′′′ , κZ′′′′ · diam(ϕ(ZT ))) for all (ϕ, T ) ∈
GLD(R) × Rd. Note that Z ′′′′ depends only on Z so that MZ′′′′ , κZ′′′′ are depending
only on Z, and this completes the proof of Proposition 7.1.
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