
RANDOM WALKS ON INFINITE GRAPHS AND GROUPS
(Cambridge Tracts in Mathematics 138)

By Wolfgang Woess 334 pp., £40.00 (US$64.95), isbn 0-521-55292-3
(Cambridge University Press, 2000).

The simple random walk on the integers is one of the simplest random processes
that one can imagine. It generalizes to any finitely generated group Γ equipped
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with a finite set S of generators. If Xn ∈ Γ denotes the position at time n, then
Xn+1 = Xnξn+1, where ξn is chosen uniformly at random in S . More generally, ξn can
be picked according to a given probability measure µ. Then the probability that the
walk started at the neutral element X0 = e reaches x at time n is Pe(Xn = x) = µ(n)(x),
where µ(n) denotes the nth convolution power of µ. We always assume below that
the generating set S is symmetric, that is, S = S−1.

Will a random walk return infinitely many times to its starting point? This is the
question discussed in Pólya’s seminal article [6], in the case of integer lattices. If the
answer is yes, then the walk is called recurrent; otherwise, it is called transient. Pólya’s
well-known finding is that the simple random walk on the integer lattice in Euclidean
space is recurrent in one or two dimensions, and transient in dimension three or
higher. Indeed, transience/recurrence is equivalent to the convergence/divergence of
the series

∑
Pe(Xn = e) and, in dimension d,

Pe(X2n = e) ∼ cdn−d/2 as n tends to infinity. (1)

(For parity reasons, one cannot return to the starting point at odd time.) Spitzer’s
famous book [7] gives a thorough and beautiful treatment of random walks on
integer lattices.

For general groups, one of the most basic and natural questions about random
walks concerns the asymptotic behaviour of the probability of return to the starting
point. How does (1) generalize to non-Abelian groups? For instance, can one char-
acterize those groups which carry a recurrent simple random walk? The first work
on random walks on general finitely generated groups is Kesten’s thesis [4]. In the
sequel [5], he proves the fundamental result that Pe(Xn = e) decays exponentially
fast if and only if the group is non-amenable. The next crucial development con-
cerning the behaviour of Pe(Xn = e) came more than twenty years later. To describe
this, let V (n) be the number of elements in the group that can be written as words
of length at most n in the generators s ∈ S . Write f(n) ≈ g(n) if there are constants
such that c1f(c2n) 6 g(n) 6 c3f(c4n) for all n. During the 1980s, Varopoulos [8]
proved that if V (n) > cnd, then Pe(Xn = e) 6 Cn−d/2. This is remarkable because
no further assumption on the group Γ is made. One celebrated consequence is
that the only recurrent groups are the finite extensions of {0}, Z and Z2. Together
with deep theorems concerning the algebraic structure of groups (theorems due to
Malcev, Gromov, Tits, Wolf, and others), this leads to the following result. For a
simple random walk on a discrete subgroup Γ of a connected Lie group, three
and only three behaviours may occur: (i) Pe(X2n = e) ≈ n−d/2 for some integer d;
(ii) Pe(X2n = e) ≈ exp−n1/3; (iii) Pe(X2n = e) ≈ exp(−n). Moreover: case (i) happens
if and only if Γ is virtually nilpotent and V (n) ≈ nd; case (ii) happens if and only
if Γ is virtually polycyclic and V (n) ≈ exp(n); case (iii) happens if and only if Γ is
non-amenable. Still, today, there are many finitely generated groups for which the
behaviour of Pe(Xn = e) is not well understood, for instance, metabelian (that is,
two-steps solvable) non-polycyclic groups.

Another fundamental aspect of the theory of random walks concerns the
existence and behaviour of harmonic functions and the related boundary theories.
(A function u is (µ)-harmonic if it satisfies the convolution equation u ∗ µ = u.)
Indeed, this aspect played an important role at an early stage of the development of
the theory, and is still an active area of study. A celebrated problem in this direction
concerns the existence of bounded or positive harmonic functions: a measure µ has
the Liouville property (respectively, the strong Liouville property) if any bounded
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(respectively, positive) harmonic function is constant. It is still an open problem
today whether or not these Liouville properties for simple random walks on a group
are, in general, independent of the generating set.

Woess’ book gives a well-documented, informative and personal treatment of
the theory of random walks as it has evolved since Spitzer’s book [7]. Although
it is not meant to be self-contained, it gives careful proofs of most of the results
that are discussed. The book actually treats the more general theory of random
walks on graphs, but manages always to stay close to the heart of the matter.
It includes some beautiful results on random walks on planar graphs. Random
walks on Cayley graphs (that is, simple random walks on groups) are treated as
a special case of random walks on graphs having a vertex-transitive group of
automorphisms. The first chapter studies the ‘type problem’, that is, whether or not
a given walk is recurrent. It gives a thorough and detailed treatment, including
many interesting specific examples of recurrent graphs. The second chapter concerns
the amenable/non-amenable dichotomy, and the problem of computing the so-

called spectral radius ρ = lim supn→∞ n
√

Pe(Xn = e) of some walks. The third chapter
treats the asymptotic behaviour of Pe(Xn = e). Although many satisfactory results
concerning the rough asymptotic behaviour of Pe(Xn = e) (in the sense of the
relation ≈) are known, obtaining precise asymptotic results such as (1) is, in many
cases, an open problem. In this direction, Woess describes a rich collection of results
concerning specific groups. A recent development in this direction that is not included
in the book is [1]. The fourth and last chapter gives a nice treatment of certain
aspects of boundary theory. (I was surprised not to find [2] in the bibliography,
and I wish that the results of [3] had been included, at least in the further results
section.) The book focuses chiefly on positive harmonic functions, leaving the task
of giving a complete treatment of Poisson boundary theory to another author.

Random walk theory is connected with many other areas of mathematics. With-
out distracting the author from its main theme, these links appear all through the
text. Some readers will find that certain connections (for example, to volume growth,
isoperimetry, geometric group theory, algebraic structure, covering of compact mani-
folds) could have been developed more, but this would have led to a voluminous
and very different book.

This is an excellent book, where beginners and specialists alike will find useful
information. It will become one of the major references for all those interested
directly or indirectly in random walks. I highly recommend it.
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Ann. Inst. H. Poincaré Probab. Statist. 31 (1995) 59–80.

4. H. Kesten, ‘Symmetric random walks on groups’, Trans. Amer. Math. Soc. 92 (1959) 336–354.
5. H. Kesten, ‘Full Banach mean values on countable groups’, Math. Scand. 7 (1959) 146–156.
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