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The theme of this book is the interplay between the behaviour of random walks and the
properties of their countable state space. This underlying state space is a (usually locally
finite) infinite graph; the most important examples are the Cayley graphs of finitely generated
groups and plane tilings. Note that a question on such random walks can always be translated
into harmonic analysis on infinite electrical networks.

The main interest is in probabilistic properties of the random walk which reflect the coarse

geometric structure of the underlying graph — this means properties that are invariant under
quasi- (also called rough-) isometries of the graph. For example, having polynomial growth
of degree d is such a geometric property of a graph, and a celebrated theorem of Gromov in
geometric group theory says that for groups this is equivalent to being almost-nilpotent (having
a nilpotent subgroup of finite index). However, the geometric point of view on random walks
does not come from enjoying the comfort of having nice structural theorems for graphs, but
is a result of asking natural probabilistic questions. The development of the book reflects this
idea very well: each of the four chapters is built around one specific type of question about
the behaviour of random walks, and the answers always turn out to be of geometric nature.
Besides general results on the underlying graph, more exact answers are always given for various
different graphs, such as integer lattices, trees, Cartesian and free products, nilpotent groups,
Gromov-hyperbolic groups, plane tilings.

Chapter I (The type problem) begins with a nice introduction to random walks and infinite
networks, and continues with answering the most natural question: which graphs can carry a
recurrent random walk? The whole chapter is basically a well-organized proof of the following
answer. Let X be a quasi-transitive infinite graph, i.e. Aut (X) acts with finitely many orbits on

X . If some quasi-transitive random walk (X, P ) is recurrent, then X is quasi-isometric to the

one- or two-dimensional grid; moreover, Aut (X, P ) has a discrete subgroup isomorphic to Z or

Z
2 which acts quasi-transitively and fixed-point-freely. In this case, every strongly reversible,

quasi-transitive random walk on X with finite second moment is recurrent. Otherwise, X

contains a transient subtree. The generalization from Varopoulos’ characterization of recurrent
Cayley graphs to the above result on quasi-transitive graphs is mainly done by pure graph
theory. Note that this is a real generalization: while recurrence is easily seen to be quasi-
isometry invariant, it is a conjecture that not every quasi-transitive graph is quasi-isometric to
a Cayley graph. The more subtle results for particular classes of graphs are about generalized
lattices and trees, there is a characterization of recurrent circle packings on the plane, and we
can find the beautiful result that every quasi-regular plane tiling is recurrent.

If the spectral radius of a random walk P is ρ(P ) < 1, then it is transient; the converse
is not true. Chapter II is devoted to an analysis of this finer parameter. The rate of escape is
examined for the case ρ(P ) < 1, Green function computations are presented to determine the
spectral radius, and connections to strong isoperimetric inequalities are shown. In particular, a
graph is amenable (i.e. does not satisfy a strong isoperimetric inequality) iff the simple random
walk on it has ρ(P ) = 1. Clearly, amenability is the most important coarse geometric property
of graphs.

Chapter III deals with an even more subtle problem: the asymptotic behaviour of tran-

sition probabilities p(n)(x, y), x, y ∈ X . It starts with the local central limit theorem about
general measures on Z

d, then gives lower and upper bounds on the transition probabilities in
terms of isoperimetric inequalities. These bounds are sharp for so-called quasi-homogeneous
graphs of polynomial growth and for non-amenable graphs, and also for polycyclic groups and
for the solvable Baumslag-Solitar groups (which are amenable groups with exponential growth).
Examples for non-sharpness are investigated: the lamplighter groups and the Sierpiński graphs.
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Local limit theorems for free and Cartesian products and homogeneous trees are also given.
Chapter IV is an introduction to topological boundary theory. This means that we

consider a compactification X̂ of the underlying infinite graph X , ϑX := X̂ \ X is called the
boundary, and we would like to answer the following questions. 1. Given a transient random
walk Zn on X , does it converge to a random variable Z∞ on ϑX? 2. Dirichlet problem at

infinity: given a continuous function ϑX −→ R, does it always have a continuous extension
on X which is harmonic with respect to a given random walk? 3. Identification of the Martin

boundary: does every positive harmonic function have an integral representation over ϑX?
Each of these questions is finer than the previous one, and answers are given for different
classes of graphs, with respect to end compactifications, to Gromov-hyperbolic boundaries, and
to the natural boundary for circle packings of the unit disk. Note that these boundaries are
quasi- isometric invariant, but there are two quasi-isometric graphs such that one of them has
non-constant bounded harmonic functions, while the other does not. We also remark that the
word ‘topological’ in the title is to distinguish from the measure theoretic Poisson-Furstenberg-
Kaimanovich boundary theory, which is the study of the bounded harmonic functions instead
of all positive harmonic ones, and which is considered only marginally in this book.

The organization of the book by the four probabilistic themes instead of saying first ‘every-
thing’ about random walks on integer lattices, then nilpotent groups, trees, hyperbolic groups,
etc. made me a little bit difficult to find particular results I was looking for, but makes the
ideas and methods very transparent. This feature, together with the plenty of examples and
the clarity of the exposition, make the book very suitable for graduate study. For researchers,
the respectable list of 357 references, and the historical notes helping to navigate among them,
are useful. The main disadvantage of the book is that it contains very little about applications
of the results and methods to stochastic problems other than random walks, which connections
have been very important since the emergence of a strong group of random walkers (and be-
yond) in Israel and the USA (Benjamini, Lyons, Pemantle, Peres, Schramm) in the 90’s. The
author himself apologizes for this gap a few times, and refers the Reader to the forthcoming
book by Lyons and Peres (http://www.stat.berkeley.edu/~peres).

The author, who is an acknowledged researcher in the field, ends his preface with the hope
that the fun he found in writing this book will infect some of the readers, too. I think that this
is one of the most important achievements a book can reach, and I am very glad to recognize
that at least one reader has been infected.


