Reminder

In all DK related publications, it is required to acknowledge support of the FWF. The following naming convention must be used in all cases:

    Austrian Science Fund (FWF): W1230

For example, you may include a sentence such as "The author acknowledges the support of the Austrian Science Fund (FWF): W1230." Please do not forget!

Project 12:
Exchange graphs of triangulations

2011
[33]McMahon, Jordan D. and Lane, Joseph R., Explicit correlation and basis set superposition error: The structure and energy of carbon dioxide dimer, The Journal of chemical physics, 135, \#154309, 1-8, (2011). [bibtex] [doi]
2014
[32]Karin Baur, Aslak Bakke Buan and Robert J. Marsh, Torsion pairs and rigid objects in tubes, Algebr. Represent. Theory, 17(2), 565-591, (2014). [bibtex] [doi]
[31]Baur, Karin and Dupont, Grégoire, Compactifying exchange graphs I: Annuli and tubes, Ann. Comb., 18(3), 383–396, (2014). [bibtex] [doi]
2016
[30]Baur, Karin, King, Alastair D. and Marsh, Robert J., Dimer models and cluster categories of Grassmannians, Proc. Lond. Math. Soc. (3), 113(2), 213–260, (2016). [bibtex] [doi]
[29]Baur, Karin, Parsons, Mark J. and Tschabold, Manuela, Infinite friezes, European J. Combin., 54, 220–237, (2016). [bibtex] [doi]
[28]Bogdanic, Dusko, Existence of gradings on associative algebras, Comm. Algebra, 44(7), 3069–3076, (2016). [bibtex] [doi]
[27]Parsons, Mark James, Explicit construction of companion bases, Glasg. Math. J., 58(2), 357–384, (2016). [bibtex] [doi]
[26]Vogel, Hannah, Asymptotic triangulations and cluster algebras, PhD thesis, Karl-Franzens University Graz, (2016). [bibtex] [url]
2017
[25]O. Aichholzer, L. Andritsch, K. Baur and B. Vogtenhuber, Perfect $k$-colored matchings and $k+2$-gonal tilings, Chapter in Proc. $33^{rd}$ European Workshop on Computational Geometry (EuroCG 2017), Malmö University, 81–84, (2017). [bibtex] [pdf]
[24]Baur, Karin and Bogdanic, Dusko, Extensions between Cohen-Macaulay modules of Grassmannian cluster categories, J. Algebraic Combin., 45(4), 965–1000, (2017). [bibtex] [doi]
[23]Gunawan, Emily, Musiker, Gregg and Vogel, Hannah, Infinite friezes of cluster algebras from surfaces, Sém. Lothar. Combin., 78B, \#\,76, 1–12, (2017). [bibtex] [url]
[22]McMahon, Jordan, Higher frieze patterns, (2017). (preprint) [bibtex]
2018
[21]O. Aichholzer, L. Andritsch, K. Baur and B. Vogtenhuber, Perfect $k$-Colored Matchings and $(k+2)$-Gonal Tilings, Graphs and Combinatorics, 34(6), 1333–1346, (2018). (https://doi.org/10.1007/s00373-018-1967-8) [bibtex] [url] [doi]
[20]Baur, Karin and Martin, Paul P., The fibres of the Scott map on polygon tilings are the flip equivalence classes, Monatsh. Math., 187(3), 385–424, (2018). [bibtex] [url] [doi]
[19]Baur, Karin and Gratz, Sira, Transfinite mutations in the completed infinity-gon, J. Combin. Theory Ser. A, 155, 321–359, (2018). [bibtex] [doi]
[18]Baur, Karin and Nasr-Isfahani, Alireza, Strongness of companion bases for cluster-tilted algebras of finite type, Proc. Amer. Math. Soc., 146(6), 2409–2416, (2018). [bibtex] [url] [doi]
[17]Baur, Karin, Faber, Eleonore, Gratz, Sira, Serhiyenko, Khrystyna and Todorov, Gordana, Mutation of friezes, Bull. Sci. Math., 142, 1–48, (2018). [bibtex] [doi]
[16], Fabric idempotent ideals and homological dimensions, preprint, (2018). [bibtex]
[15]Vogel, Hannah, Anna Felikson and Pavel Tumarkin, Asymptotic triangulations and Coxeter transformations of the annulus, Glasg. Math. J., 60(1), 63–96, (2018). [bibtex] [doi]
[14], Quiddity sequences for $\mathrm{SL}_3$-frieze patterns, (2018). (preprint) [bibtex]
[13]McMahon, Jordan, Higher support tilting I: higher Auslander algebras of linearly oriented type A, (2018). (preprint) [bibtex]
2019
[12]O. Aichholzer, L. Andritsch, K. Baur and B. Vogtenhuber, Transformed flips in triangulations and matchings, (2019). (preprint) [bibtex]
[11]Lukas Andritsch, Combinatorial aspects of tilings, PhD thesis, Karl-Franzens University Graz, (2019). [bibtex]
[10]Baur, Karin and Martin, Paul P., A generalised Euler-Poincaré formula for associahedra, Bull. Lond. Math. Soc., 51(1), 181–192, (2019). [bibtex] [url] [doi]
[9]Karin Baur, Klemens Fellner, Mark James Parsons and Manuela Tschabold, Growth behaviour of periodic tame friezes, 35(2), 575–606, (2019). [bibtex] [doi]
[8]McMahon, Jordan, Idempotent Ideals and Higher Auslander-Reiten theory, PhD thesis, Karl-Franzens University Graz, (2019). [bibtex] [url]
[7]Baur, Karin and Coelho Simões, Raquel, A Geometric Model for the Module Category of a Gentle Algebra, International Mathematics Research Notices, (2019). (rnz150) [bibtex] [url] [doi]
[6]McMahon, Jordan, Higher gentle algebras, (2019). (preprint) [bibtex]
2020
[5]Andritsch, Lukas, Boundary algebra of a GL$_m$-dimer, 48(6), (2020). [bibtex] [doi]
[4]Andritsch, Lukas, A note on friezes of type $\Lambda_4$ and $\Lambda_6$, 343(7), (2020). [bibtex] [doi]
[3]Baur, Karin, Bogdanic, Dusko and Garcia Elsener, Ana, Cluster categories from Grassmannians and root combinatorics, Nagoya Mathematical Journal, Cambridge University Press, 240, 322–354, (2020). [bibtex] [doi]
2021
[2]Karin Baur, Eleonore Faber, Sira Gratz, Khrystyna Serhiyenko and Gordana Todorov, Friezes satisfying higher SL$_k$-determinants, 15(1), 29–68, (2021). [bibtex] [doi]
[1]Karin Baur and Sibylle Schroll, Higher extensions for gentle algebras, Bulletin des Sciences Mathématiques, 170, (2021). [bibtex] [doi]