Winter 2019 — Algebra (VO+UE)

Verantwortlich für die Lehrveranstaltung ist Marc Technau ().

Die Inhalte auf dieser Webseite werden laufend aktualisiert. Bitte beachten Sie den Zeitstempel am unteren Ende der Seite.

Termine

Vorlesung:
Mi., 16:15–18:00, Hörsaal BE01
Do., 12:15–14:00, Hörsaal BE01
Übung:
Mo., 09:15–10:00, Raum AE06

Inhalt und Voraussetzungen

Das Hauptaugenmerk der Vorlesung liegt auf der Körpertheorie. Die Tatsache, dass Homomorphismen zwischen Körpern stets injektiv sind, verhindert die aus der Ringtheorie als sehr nützlich bekannte Faktorbildung; Das Studium von Teilkörpern und Körpererweiterungen erhebt sich also zum zentralen Betrachtungsobjekt.
Im Rahmen der Vorlesung klären wir die Existenz interessanter Körpererweiterungen (z.B. die Frage, ob jeder Körper einen algebraischen Abschluss besitzt) und untersuchen gewisse diesen zugeordnete Automorphismengruppen.
Als Anwendung erhalten wir unter anderem ein gutes Verständnis aller endlichen Körper.
Ein Meilenstein der Algebra ist die Entwicklung der Galois-Theorie, welche eine 1:1-Korrespondenz zwischen Zwischenkörpern und den Untergruppen dieser Automorphismengruppen herstellt und speziell durch das Wechselspiel zwischen Körper- und Gruppentheorie eine erstaunliche Schlagkraft entfaltet. Wir behandeln diese Theorie nebst einigen Anwendungen derselben (z.B. Fundamentalsatz der Algebra und der Satz von Abel–Ruffini). Die nachstehende Abbildung veranschaulicht die Galois-Korrespondenz anhand der Körpererweiterung (24,i)/ (modulo einiger Vereinfachungen auf der Gruppenebene):

(Abbildung: Beispiel für die Galois-Korrespondenz)

Im zweiten Teil der Vorlesung geben wir eine Einführung in die Theorie der Moduln (salopp gesagt sind dies „Vektorräume über Ringen“). Hauptziel ist es, diverse scheinbar unverwandte Normalformergebnisse aus der linearen Algebra als Spezialfall eines umfassenden Strukturergebnisses zu erkennen.

Aus dem Lehrveranstaltungsinhaltskatalog:
Körpertheorie (normale und separable Körpererweiterungen, algebraischer Abschluss, Hilbertscher Nullstellensatz, Hauptsatz der Galoistheorie, Verschiebungssatz, Fundamentalsatz der Algebra, Kreisteilungskörper, Aufösbarkeit durch Radikale, Transzendenzbasen), Weiterführung der Gruppentheorie (Operation von Gruppen auf Mengen, Permutationsgruppen, Sylowsätze, Aufösbarkeit), Grundbegriffe der Modultheorie (endlich erzeugte Moduln, Faktormodul).

Vertrautheit mit Gruppen- und Ringtheorie im Rahmen der Vorlesung Einführung in die Algebra von Christian Elsholtz wird vorausgesetzt.

Prüfungsmodus

Bestehen der Übung

Die Benotung richtet sich nach wöchentlicher Bearbeitung und schriftlicher Abgabe von Übungsaufgaben. Die Abgabe einer Bearbeitung nebst Anmeldung zur Übung auf TUGonline zählt als Prüfungsantritt und zieht eine Benotung am Ende des Semesters nach sich, sofern nicht bis zum 31.10.2019 eine Abmeldung via TUGonline erfolgt.

Auf die Bearbeitung der Übungsaufgaben werden Punkte vergeben. Bei der Bewertung der Bearbeitung wird neben der mathematischen Korrektheit auch auf die Qualität der schriftlichen Präsentation Wert gelegt. Grundsätzlich sind Gedankengänge klar und nachvollziehbar in ganzen Sätzen auszuführen. Sofern in den Aufgaben nichts Gegenteiliges geboten wird, sind zu deren Lösung nur Ergebnisse zu verwenden, die bereits aus dieser Vorlesung, oder der Vorlesung Einführung in die Algebra von Christian Elsholtz bekannt sind. (Zusätzlich erlaubt sind Ergebnisse, die man üblicherweise aus Vorlesungen zur Analysis oder linearen Algebra kennen sollte. Bei Unklarheiten fragen Sie bitte .)

Die Note für die Übung berechnet sich dann durch den Quotient η aus erreichter Punktzahl und maximal möglicher Gesamtpunktzahl gemäß der folgenden Tabelle:

Bereich für η Note
85% ≤ η „Sehr gut“ (1)
70% ≤ η < 85% „Gut“ (2)
60% ≤ η < 70% „Befriedigend“ (3)
50% ≤ η < 60% „Genügend“ (4)
00% ≤ η < 50% „Nicht genügend“ (5)

Bestehen der Vorlesung

Die Prüfung zur Vorlesung erfolgt mündlich. sind bitte via E-Mail an Marc Technau zu richten.

Die Prüfungsmodalitäten werden hier näher erläutert.

Literaturauswahl

Vorlesungsskriptum

Den Hörerinnen und Hörern wird zum privaten Gebrauch ein Vorlesungsskriptum zur Verfügung gestellt. Dieses ist nicht zur Weitergabe bestimmt. Hier gibt es die einzelnen Kapitel:

Das gesamte Skriptum gibt es hier als eine PDF-Datei.

Bitte Sie etwaige Fehler im Skriptum!

Die am 06.11.2019 in der Vorlesung gezeigten Plots finden sich hier als PDF und hier als ver├Ąnderbares Mathematica-Notebook.
Die am 28.11.2019 in der Vorlesung gezeigte Übersicht über den bisher in der Vorlesung behandelten Stoff finden Sie hier.

Übungsblätter

Blatt Abgabe am ... Besprechung am ...
Blatt 1 10.10.2019 14.10.2019
Blatt 2 17.10.2019 21.10.2019
Blatt 3 24.10.2019 28.10.2019
Blatt 4 31.10.2019 04.11.2019
Blatt 5 07.11.2019 11.11.2019
Blatt 6 14.11.2019 18.11.2019
Blatt 7 20.11.2019 25.11.2019
Blatt 8 28.11.2019 02.12.2019
Blatt 9 05.12.2019 09.12.2019
Blatt 10 12.12.2019 13.01.2020
Blatt 11 09.01.2020 13.01.2020
Blatt 12 16.01.2020 20.01.2020
Blatt 13 23.01.2020

Tutoriumsblätter